

RIGGINGACCESSORIES

HG-223

Rigging Accessories

DESIGN

The theoretical reserve capability of turnbuckles should be five times the orking Load Limit (FF-T-791). Known as the DESIGN FACTOR, it is usually computed by dividing the catalog ultimate load by the Working Load Limit. The ultimate load is the average load or force at which the product fails or no longer supports the load. The Working Load Limit is the maximum mass or force which the product

Croshy

Ask: What is the design factor?
Most competitors do not provide turnbuckle assemblies that exceed Crosby's Working
Load Limits with a design factor of 5 to 1 .

All turnbuckles are designed with a design factor of at least 5 to 1. Crosby turnbuckles have the highest Working Load Limits in the industry. Crosby working load limits and design factors are based on extensive testing. is authorized to support in general service. The design factor is generally expressed as a ratio, such as 5 to 1 .

HEAT TREATMENT

Heat treatment assures the uniformity of performance and maximizes the properties of the steel. This assures that each turnbuckle will meet its rated strength. The requirements of your job demand this reliability and consistency. All turnbuckle bodies should be normalized and end fitings should be normalized or quenched and tempered in order to assure uniformity. These heat treat processes develop a tough material that reduces the risk of a brittle, catastrophic failure, and assures the performance of the turnbuckle assembly.

THE COMPETITION

Ask: Do they utilize the combination of heat treatment that assures the performance of the turnbuckle assembly?

Most normalize both the turnbuckle body and end fittings. Some provide turnbuckles in an "as forged" condition.

Crosly

All turnbuckles are heat treated. Bodies are normalized, and end fittings are quenched and tempered or normalized. These heat treat processes provide a turnbuckle assembly that has superior impact and fatigue qualities and assures performance.

GALVANIZE AND THREAD FORM

Galvanizing provides the best resistance to corrosion. Turnbuckle ends are the most highly stressed part of the assembly. This stress is at its peak at the root of the threaded shank. The turnbuckle ends should be threaded with a modified thread that minimizes the stress at the root of the thread.

THE COMPETITION

Ask: Do they use the modified UNJ thread
Most galvanize their turnbuckles but do not utilize the modified thread.

Aroshy"

All turnbuckles are available galvanized. Turnbuckle ends are threaded with a modified UNJ thread. This thread form, in conjunction with quench and tempering, gives Crosby turnbuckles their superior impact and fatigue performance.

FULL LINE AND IDENTIFICATION

The proper application of turnbuckles requires that the correct type and size of turnbuckle be used. The turnbuckle size, the manufacturer's logo, and a product identification code should be clearly and boldly marked in the end fittings as well as in the turnbuckle bod. Traceability of the material chemistry is essential for total confidence in the manufacturer of the product. Availability over the full range of sizes of hook, eye, and jaw type turnbuckle assemblies is essential for flexibility in the design of a total system

THE COMPETITION

Ask: Do they have a traceability system?
Ask: Is the full range of type and size turnbuckles offered?

Most competitors do not have the full line that Crosby produces, or a traceability system.

Fraslay"

Crosby forges its logo, sizes, and the Product Identification Code (PIC) into each component of its full line of hook, jaw, and eye type turnbuckles.

G-414
G-414 meets the performance requirements of Federal Specification FF-T-276b Type III, except for those provisions required of the contractor. For additional information, see page 452.

- Available in Hot Dip galvanized or Stainless Steel (Type 304).
- Stainless steel recommended for more corrosive environments where greater protection is required.
- Greater protection against wear and deformation of the wire rope eye.
- Longer service life.

Extra heavy Wire Rope Thimbles

Rope Dia.		Stock No.		Weight Per 100 (lb)	Dimensions (in)							
(in)	(mm)	G-414 Stock No	$\begin{gathered} \text { SS-414 } \\ \text { Stainless } \end{gathered}$		A	B	C	D	E	F	G	H
*1/4	6-7	1037639	1037960	7	2.19	1.62	1.50	. 88	. 41	. 28	. 06	. 25
* 5/16	8	1037657	1037988	14	2.50	1.88	1.81	1.06	. 50	. 34	. 08	. 30
* 3/8	9-10	1037675	1038004	23	2.88	2.12	2.12	1.12	. 63	. 41	. 11	. 39
7/16	11-12	1037693	-	37	3.25	2.38	2.38	1.25	. 72	. 47	. 12	. 45
* 1/2-9/16	13-15	1037719	1038022	50	3.62	2.75	2.75	1.50	. 89	. 59	. 15	. 48
* 5/8	16	1037755	1038040	82	4.25	3.25	3.12	1.75	1.00	. 66	. 16	. 53
* 3/4	18-20	1037773	1038068	157	5.00	3.75	3.81	2.00	1.22	. 78	. 22	. 69
7/8	22	1037791	-	190	5.50	4.25	4.25	2.25	1.38	. 94	. 22	. 78
1	24-26	1037817	-	280	6.12	4.50	4.75	2.50	1.56	1.06	. 25	. 88
1-1/8-1-1/4	28-32	1037835	-	-	7.00	5.12	5.88	2.88	1.88	1.31	. 25	1.25
1-1/4-1-3/8	32-35	1037853	-	830	9.08	6.50	6.81	3.50	2.25	1.44	. 37	1.29
1-3/8-1-1/2	35-38	1037871	-	1250	9.00	6.25	7.12	3.50	2.62	1.56	. 50	1.31
1-5/8	40	1037899	-	-	11.25	8.00	8.12	4.00	3.00	1.72	. 50	1.38
1-3/4	44	1037915	-	1860	12.19	9.00	8.50	4.50	3.06	1.84	. 50	1.50
1-7/8-2	48-52	1037933	-	2780	15.12	12.00	10.38	6.00	3.38	2.09	. 50	1.69
2-1/4	56	1037951	-	-	17.50	14.00	11.88	7.00	3.88	2.38	. 62	1.82

G-414 SL
G-414 SL meets the performance requirements of Federal Specification FF-T-276b Type III, except for those provisions required of the contractor. For additional information, see page 452.

- Prevents the shackle from being removed and replaced in the field, which could compromise the certified integrity of the sling assembl.
- Available in Hot Dip galvanized. Crosby's shackle locking thimbles are galvanized after the welding of the wedge has been completed.
- Greater protection against wear and deformation of the wire rope eye.
- Longer service life.

Scan our QR code with your smart device to visit the online flye

Extra Heavy Wire Rope Thimbles (Shackle-Loc)

Rope Dia.		Stock No.	$\begin{aligned} & \text { Weight Per } \\ & 100 \\ & \text { (lb) } \end{aligned}$	Dimensions (in)								
(in)	(mm)	G-414SL Stock No		A	B	C	D	E	F	G	H	J
3/8	9-10	1036800	24	2.88	2.12	2.12	1.12	. 63	. 41	. 11	. 39	. 81
1/2-9/16	13-15	1036808	55	3.62	2.75	2.75	1.50	. 89	. 59	. 15	. 48	1.12
5/8	16	1036817	82	4.25	3.25	3.12	1.75	1.00	. 66	. 16	. 53	1.25
3/4	18-20	1036826	161	5.00	3.75	3.81	2.00	1.22	. 78	. 22	. 69	1.50
7/8	22	1036835	206	5.50	4.25	4.25	2.25	1.38	. 94	. 22	. 78	1.63
1	24-26	1036844	300	6.12	4.50	4.75	2.50	1.56	1.06	. 25	. 88	1.88
1-1/8-1-1/4	28-32	1036853	425	7.00	5.12	5.88	2.88	1.88	1.31	. 25	1.25	2.13
1-3/8-1-1/2	35-38	1036862	1317	9.00	6.25	7.12	3.50	2.62	1.56	. 50	1.31	2.50

G-411

- Hot Dip galvanized steel.
- The standard choice for light duty applications and loading conditions.

Standard Wire Rope Thimbles

Rope Dia.		G-411 Stock No	Weight Per 100 (lb)	Dimensions (in)							
(in)	(mm)			A	B	C	D	E	F	G	H
1/8	3-4	1037256	3.50	1.94	1.31	1.06	. 69	. 25	. 16	. 05	. 13
3/16	5	1037274	3.50	1.94	1.31	1.06	. 69	. 31	. 22	. 05	. 13
1/4	6-7	1037292	3.50	1.94	1.31	1.06	. 69	. 38	. 28	. 05	. 13
5/16	8	1037318	4.00	2.13	1.50	1.25	. 81	. 44	. 34	. 05	. 13
3/8	9-10	1037336	6.70	2.38	1.63	1.47	. 94	. 53	. 41	. 06	. 16
1/2	11-13	1037354	12.50	2.75	1.88	1.75	1.13	. 69	. 53	. 08	. 19
5/8	16	1037372	34.50	3.50	2.25	2.38	1.38	. 91	. 66	. 13	. 34
3/4	18-20	1037390	47.10	3.75	2.50	2.69	1.63	1.08	. 78	. 14	. 34
7/8	22	1037416	84.60	5.00	3.50	3.19	1.88	1.27	. 94	. 16	. 44
1	24-26	1037434	97.50	5.69	4.25	3.75	2.50	1.39	1.06	. 16	. 41
1-1/8-1-1/4	28-32	1037452	175.00	6.25	4.50	4.31	2.75	1.75	1.31	. 22	. 50

G-411 meets the performance requirements of Federal Specification FF- -276b Type II, except for those provisions required of the contractor. For additional information, see page 444.

(Open Pattern)

- Hot Dip galvanized Steel.
- Recommended for light duty applications in which it is being assembled into another fitting (i.e., shackle or master link).

Open Pattern Thimbles

Rope Dia.		$\begin{gathered} \text { G-408 } \\ \text { Stock No } \\ \hline \end{gathered}$	Weight Per 100 (lb)	Dimensions (in)					
(in)	(mm)			A	B	C	D	E	F
1/4	6-7	1037531	3.00	. 28	. 69	1.06	1.41	2.03	. 38
5/16	8	1037559	3.80	. 34	. 81	1.25	1.53	2.16	. 50
3/8	9-10	1037577	7.00	. 44	. 94	1.47	1.72	2.47	. 62
1/2	11-13	1037595	12.50	. 53	1.12	1.75	1.97	2.84	75
5/8	16	1037611	25.00	. 66	1.38	2.38	2.34	3.59	1.00

- Cast Ductile Iron.
- Fits pin for open wire rope socket, boom pendant clevis and wedge socket.

Solid Wire Rope Thimbles

Rope Dia.		S-412 Stock No	Weight Per 100 (lb)	Dimensions (in)										
(in)	(mm)			A	B	C	D	E	F	G	H	J	K	L
1/2	13	1037121	. 61	2.81	1.75	. 25	1.06	. 75	. 56	. 28	. 88	2.13	1.63	1.56
5/8	16	1037149	2.21	4.69	3.00	. 38	1.31	1.06	. 81	. 41	1.13	3.38	2.25	2.56
3/4	18-20	1037167	2.32	4.69	3.00	. 38	1.50	1.06	. 81	. 41	1.38	3.38	2.25	2.56
7/8	22	1037185	5.45	6.06	3.81	. 50	1.75	1.38	1.06	. 53	1.63	4.50	3.25	3.44
1	24-26	1037201	5.25	6.06	3.81	. 50	2.13	1.38	1.06	. 53	1.81	4.50	3.25	3.44
1-1/8	28-30	1037229	9.29	7.25	4.56	. 63	2.38	1.75	1.31	. 66	2.06	5.38	3.88	4.06
1-1/4-1-3/8	32-35	1037247	9.81	7.25	4.56	. 63	2.63	1.94	1.53	. 78	2.31	5.38	3.88	4.13

A-342 Alloy Master Links

- Alloy Steel — Quenched and Tempered.
- Individually Proof Tested to values shown, with certification
- Proof Tested with special fixtures sized to prevent localized point loading. See foot notes, and reference page 276.
- Forgings have a Product Identification Code (PIC) for material traceabilit, along with the size, the name Crosby and USA in raised lettering.
- Selected sizes designated with "W" in the size column have enlarged inside dimensions to allow additional room for sling hardware and crane hook.
- Crosby 7/8" to 2" 342 master links are type approved to DNV GL-ST-E271-2.7-1 Offshore Containers. These Crosby master links are 100\% proof tested, MPI and impact tested. The tests are conducted by Crosby and
 3.1 test certification is available upon request. Refer to page 164 for Crosby COLD TUFF ${ }^{\oplus}$ master links that meet the additional requirements of DNV rules for certification of lifting appliances - Loose Gea .
- Incorporates patented QUIC-CHECK ${ }^{\circledR}$ deformation indicators.
- Meets or exceeds all requirements of ASME B30.26 including identification, ductility, design factor, proof load and temperature requirements. Importantly, these links meet other critical performance requirements including fatigue life, impact properties and material traceability, not addressed by ASME B30.26.

A-342 Alloy Master Links

Size		A-342 Stock No	Weight Each (lb)	Working Load Limit (lb)*	Proof Load (lb)**	Dimensions (in)			
(in)	(mm)					A	B	C	Deformation Indicator
1/2W	13W	1014266	1.3	7400	17200	. 62	2.80	5.00	3.50
5/8	16	1014280	1.5	9000	18000	. 62	3.00	6.00	3.50
3/4W	19W	1014285	2.0	12300	28400	. 73	3.20	6.00	4.00
7/8W	22W	3522213	3.3	15200	$\dagger 38000$. 88	3.75	6.38	4.50
1W	26W	3522214	6.1	26000	$\dagger 65000$	1.10	4.30	7.50	5.50
1-1/4W	32W	3522215	12.0	39100	†97750	1.33	5.50	9.50	7.00
1-1/2W	38W	3522216	18.6	61100	$\dagger 152750$	1.61	5.90	10.50	6.50
1-3/4	44	3522217	25.2	84900	$\dagger 212250$	1.75	6.00	12.00	7.50
2	51	3522218	37.0	102600	$\dagger 256500$	2.00	7.00	14.00	9.00
2-1/4	57	1014422	54.1	143100	289200	2.25	8.00	16.00	10.00
2-1/2	63	1014468	68.5	160000	320000	2.50	8.38	16.00	11.00
2-3/4	70	1014440	94.0	216900	433800	2.75	9.88	18.00	12.50
3	76	1014486	115	228000	456000	3.00	9.88	18.00	13.00
3-1/4	83	1014501	145	262200	524400	3.25	10.00	20.00	13.50
3-1/2	89	1014529	200	279000	558000	3.50	12.00	24.00	15.50
3-3/4	95	1015051	198	336000	672000	3.75	10.00	20.00	13.50
4	102	1015060	264	373000	746000	4.00	12.00	24.00	16.00
†† 4-1/4	$\dagger \dagger 108$	1015067	302	354000	708000	4.25	12.00	24.00	-
†† 4-1/2	$\dagger \dagger 114$	1015079	345	360000	720000	4.50	14.00	28.00	-
$\dagger \dagger$ 4-3/4	$\dagger \dagger 121$	1015088	436	389000	778000	4.75	14.00	28.00	-
††5	$\dagger \dagger 127$	1015094	516	395000	790000	5.00	15.00	30.00	-

[^0][^1]

A-345
Alloy Master Links

- Alloy Steel - Quenched and Tempered.
- Individually Proof Tested to values shown, with certification
- Proof Tested with 60% inside width special fixtures sized to prevent localized point loading per ASTM A952, reference page 276.
- Forgings have a Product Identification Code (PIC) for material traceabilit, along with the size, the name Crosby and USA in raised lettering.
- Selected sizes designated with "W" in the size column have enlarged inside dimensions to allow additional room for sling hardware and crane hook.
- Incorporates patented QUIC-CHECK ${ }^{\oplus}$ deformation indicators.
- Meets or exceeds all requirements of ASMEB30.26 including identification, ductility, design factor, proof load and temperature requirements. Importantly, these links meet other critical performance requirements including fatigue life, impact properties and material traceability, not addressed by ASME B30.26.

QUIC-CHECK
\square
MAXOUGH ${ }^{\text { }}$

A-345 Master Link Assembly
with Engineered Flat for use with S-1325A coupler link.

Size		A-345 Stock No.	Weight Each (lb)	Working Load Limit Based on 5:1 Design Factor (lb)*	Proof Load (lb) **	$\underset{(i n)}{\text { Dimensions }}$							
(in)	(mm)					A	B	C	D	E	F	G	Deformation Indicator
3/4W	19W	1014739	3.5	12300	28400	. 73	3.20	6.00	. 56	3.35	1.77	. 30	4.00
7/8W	22W	1014742	4.8	15200	35200	. 88	3.75	6.38	. 56	3.35	1.77	. 30	4.50
1W	26W	1014766	9.3	26000	60000	1.10	4.30	7.50	. 75	3.94	2.36	. 33	5.50
1-1/4W	32W	1014779	15.8	39100	90400	1.33	5.50	9.50	1.00	6.30	3.54	. 51	7.00
1-1/2W	38W	1014807	34.1	61100	141200	1.61	5.90	10.50	1.25	7.09	3.94	. 65	7.50
1-3/4	44	1014814	46.7	84900	212250	1.75	6.00	12.00	1.38	8.00	5.00	. 73	7.50
2	51	1014832	67.2	102600	256500	2.00	7.00	14.00	1.50	9.00	5.75	-	9.00
2-1/2	64	1014855	206	160000	320000	2.50	8.38	16.00	2.50	16.00	8.38	-	11.00
2-3/4	70	1014864	282	216900	433800	2.75	9.88	18.00	2.75	18.00	9.88	-	12.50
4	102	1014999	667	373000	746000	4.00	12.00	24.00	3.50	24.00	12.00	-	$15.50{ }^{* * *}$

[^2][^3]

Ultimate Load is 5 times the Working Load Limit. Applications with wire rope and synthetic sling generally require a design factor of 5 . Based on single leg sling (in-line load), or resultant load on multiple legs with an included angle less than or equal to 120 degrees. ** Proof Test Load equals or exceeds the requirement of ASTM A952(8.1) and ASME B30.9. For use with chain slings, refer to page 240 for sling ratings and page 245 for proper master link selection.

- Alloy Steel - Quenched and Tempered.
- Individually Proof Tested to values shown, with certification
- Proof Tested with 60% inside width special fixtures sized to prevent localized point leading per ASME A-952, reference page 276.
- Each link has a Product Identification Code (PIC) for material traceability, along with the size and the name Crosby ${ }^{\circledR}$ or "CG".
- Large inside width and length to allow additional room for sling hardware and crane hook.
- Engineered Flat for use with S-1325A coupler link.
- Meets or exceeds all requirements of ASME B30.26 including
 identification, ductility, design factor, proof load and temperature
requirements. Importantly, these links meet other critical performance requirements including fatigue life, impact properties and material traceability, not addressed by ASME B30.26.
- Master links are type approved to DNV Certification Notes 2.7-1- Offshore Containers. These Crosby master links are 100\% proof tested, MPI and impact tested. The tests are conducted by Crosby and 3.1 test certification is available upon request. Refer to page 164 for Crosby COLD TUFF ${ }^{\circledR}$ master links that meet the additional requirements of DNV rules for certification of lifting appliances-Loose Gea .
- 7/16" through 1-7/32" have Engineered Flat.

A-344 Welded Master Links with Engineered Flat

		A-344 Stock No	Weight Each (lb)	Working Load Limit (Ib)*	Proof Load (lb)**	Dimensions (in)				$\begin{aligned} & \text { Engineered Flat Size } \\ & \text { for S-1325A } \\ & \text { (in) } \end{aligned}$
(in)	(mm)					A	B	C	G	
7/16	12	1256862	0.66	3500	8800	. 47	2.36	4.72	. 24	1/4
1/2	13	1256932	0.79	5500	14000	. 51	2.36	4.72	. 26	1/4
11/16	17	1257002	1.85	9000	22700	. 67	3.54	6.30	. 33	3/8
3/4	19	1257072	2.36	14700	36800	. 75	3.54	6.30	. 33	3/8
7/8	22	1257212	3.55	18700	46800	. 87	3.94	7.10	. 41	1/2
1	25	1257282	5.22	25300	63400	. 98	4.53	8.10	. 53	1/2
1-1/8	28	1257382	8.33	28600	71700	1.10	5.71	10.83	. 53	1/2
1-7/32	31	1257422	10.3	37400	93700	1.22	5.71	10.83	. 61	5/8
1-7/16	36	1257492	15.1	52900	132200	1.42	6.10	11.20	-	-
1-9/16	40	1257532	19.6	61900	154900	1.57	6.30	11.80	-	-
1-3/4	45	1257562	28.1	84400	211100	1.77	7.10	13.40	-	-
2	51	1257632	38.1	99200	248000	2.00	8.50	15.30	-	-

*Ultimate Load is 5 times the Working Load Limit. Applications with wire rope and synthetic sling generally require a design factor of 5 . Based on single leg sling (in-line load), or resultant load on multiple legs with an included angle less than or equal to 120 degrees. **Proof Test Load equals or exceeds the requirement of ASTM A952(8.1) and ASME B30.9.

A-347

Welded Master Links
Ultimate Load is 5 times the Working Load Limit. Applications with wire rope and synthetic sling generally require a design factor of 5 . Based on single leg sling (in-line load), or resultant load on multiple legs with an included angle less than or equal to 120 degrees. ** Proof Test Load equals or exceeds the requirement of ASTM A952(8.1) and ASME B30.9. For use with chain slings, refer to page 240 for sling ratings and page 245 for proper master link selection.

- Alloy Steel — Quenched and Tempered.
- Individually Proof Tested to values shown, with certification
- Proof Tested with 60% inside width special fixtures sized to prevent localized point loading per ASME A-952, reference page 276.
- Forgings have a Product Identification Code (PIC) for material traceability, along with the size, the name Crosby and USA in raised lettering.
- Selected sizes designated with "W" in the size column have enlarged inside dimensions to allow additional room for sling hardware and crane hook.
- Crosby $1 \frac{1}{4}$ " to 2 " $344 / 347$ master links are type approved to DNV Certification Notes 2.7-1- Offshore Containers. These Crosby master links are 100% proof tested, MPI and impact tested. The tests are conducted by Crosby and 3.1 test certification is available upon request. Refer to page 164 for Crosby COLD TUFF ${ }^{\circledR}$ master links that meet the additional requirements of DNV rules for certification of lifting ppliances Loose Gear.
- Engineered Flat for use with S-1325A coupler link.
- Meets or exceeds all requirements of ASME B30.26 including identification, ductility, design factor, proof load and temperature requirements. Importantly, these links meet other critical performance requirements including fatigue life, impact properties and material traceability, not addressed by ASME B30.26.

A-347 Welded Master Link Assembly with Engineered Flat

Size		A-347 Stock No	Weight Each (lb)	Working Load Limit (Ib)*	Proof Load (lb)**	Dimensions (in)							Engineered Flat Size for S-1325A (in)
(in)	(mm)					A	B	C	D	E	F	G	
1/2	13/12	1257692	1.80	5300	13200	. 51	2.36	4.72	. 47	3.35	1.77	. 24	-
11/16	17/13	1257762	3.40	9000	22700	. 67	3.54	6.30	. 51	4.72	2.36	. 26	1/4
3/4	19/13	1257832	4.00	9300	23400	. 75	3.54	6.30	. 51	4.72	2.36	. 26	1/4
7/8	22/17	1257972	7.20	14700	36800	. 87	3.94	7.10	. 67	6.30	3.54	. 33	5/16
1-1/8	28/22	1258142	15.4	31900	79800	1.10	5.71	10.83	. 87	7.10	3.94	. 41	3/8
1-7/32	31/25	1258182	20.8	37500	93700	1.22	5.71	10.83	. 98	8.10	4.53	. 53	1/2
1-9/16	40/31	1258332	40.5	61900	154900	1.57	6.30	11.80	1.22	10.63	5.50	-	-
1-3/4	45/36	1258402	58.2	84400	211100	1.77	7.10	13.40	1.42	11.20	6.10	-	-
2	51/45	1258462	95.0	99200	248000	2.00	7.50	13.80	1.80	13.40	7.10	-	-

*Ultimate Load is 5 times the Working Load Limit. Applications with wire rope and synthetic sling generally require a design factor of 5 . Based on single leg sling (in-line load), or resultant load on multiple legs with an included angle less than or equal to 120 degrees.**Proof Test Load equals or exceeds the requirement of ASTM A952(8.1) and ASME B30.9.

For use with chain slings, refer to page 246 for sling ratings and page 240 for proper master link selection.

- Alloy Steel - Quenched and Tempered
- Individually proof tested at 2 times Working Load Limit with certification
- Finish is Inorganic Zinc Primer.
- Certified to meet charpy impact testing of 31 ft -lbs. min. avg. at -4°.
- Individually serialized and all certification shipped with each link
- COLD TUFF ${ }^{\circledR}$ master links are suitable for use at $-50^{\circ} \mathrm{F}$.
- Type Approval and certification in accordance with DNV 2.7-1 O fshore Containers, DNV-OS-E101, and Rules for Certification of Lifting Appliances, and are produced in accordance with DNV MSA requirements, including required documents.
- Refer to page 88 for COLD TUFF ${ }^{\circledR}$ Shackles.

- Meets or exceeds all requirements of ASME B30.26 including identification, ductility, design factor, proof load and temperature requirements. Importantly, these fittings meet other critical performance requirements including fatigue life, impact properties and material traceability, not addressed by ASME B30.26.

A-342CT Master Links

Size (in)	A-342CT Stock No.	Working Load Limit (lb)*	Weight Each (lb)	Dimensions (in)					
				A	B	C	D	E	Deformation Indicator
7/8W	1261392	15200	3.3	0.88	3.75	6.38	5.51	8.14	4.50
1-1/4W	1261407	39100	12.0	1.33	5.50	9.50	8.16	12.16	7.00
1-1/2W	1261418	61100	18.6	1.61	5.90	10.50	9.12	13.72	7.50
1-3/4	1261423	62520	25.2	1.75	6.00	12.00	9.50	15.50	7.50
2	1261433	97680	37.0	2.00	7.00	14.00	11.00	18.00	9.00

*Minimum Ultimate Load is 5 times the Working Load Limit.

A-345CT
Master Links Assembly

- Alloy Steel - Quenched and Tempered
- Individually proof tested at 2 times Working Load Limit with certification
- Finish is Inorganic Zinc Primer.
- Certified to meet charpy impact testing of 31 ft -lbs. min. avg. at -4°
- COLD TUFF ${ }^{\circledR}$ master links are suitable for use at $-50^{\circ} \mathrm{F}$.
- Type Approval and certification in accordance with DNV 2.7-1 O fshore Containers, DNV-OS-E101, and Rules for Certification of Lifting Appliances, and are produced in accordance with DNV MSA requirements, including required documents.
- Refer to page 88 for COLD TUFF ${ }^{®}$ Shackles.
- Meets or exceeds all requirements of ASME B30.26 including identification, ductility, design factor, proof load and temperature requirements. Importantly, these fittings meet other critical performance requirements including fatigue ife,
 impact properties and material traceability, not addressed by ASME B30.26.

A-345CT Master Link Assembly

Size (in)	A-345CT Stock No.	Working Load Limit (lb)*	Weight Each (lb)	$\begin{aligned} & \hline \text { Dimensions } \\ & \text { (in) } \end{aligned}$		
				A	B	C
1-1/4	1261609	35160	30.0	1.25	4.38	8.75
1-1/2	1261620	47880	51.0	1.50	5.25	10.50
1-3/4	1261631	62520	78.0	1.75	6.00	12.00
2	1261642	97680	123.0	2.00	7.00	14.00

[^4]

G-340 from $5 / 8^{\prime \prime}$ thru $7 / 8^{\prime \prime}$ meet the performance requirements of Federal Specification RR-C-271F, Type XV, except for those provisions required of the contractor. For additional information, see page 452.

두염 $C \in$

G-340/S-340 Weldless End Links

Size (A)(in)	Stock No.		Working Load Limit (lb)*	Weight Each (lb)	Dimensions (in)			
	G-340 Galv.	S-340 S.C.			A	B	C	D
5/16	1014057	1014066	2500	. 15	. 31	. 50	1.75	1.18
3/8	1014075	1014084	3800	. 22	. 38	. 56	1.88	1.38
1/2	1014093	1014100	6500	. 49	. 50	. 75	2.38	1.81
5/8	1014119	1014128	9300	. 97	. 63	1.00	3.25	2.32
3/4	1014137	1014146	14000	1.51	. 75	1.13	3.50	2.68
7/8	1014155	1014164	12000	2.59	. 88	2.00	5.13	3.75
1	1014173	1014182	15200	3.95	1	2.25	5.75	4.25
1-1/4	1014191	1014208	26400	7.30	1.25	2.50	7.00	5.00
1-3/8	1014217	1014226	30000	10.38	1.38	2.75	7.75	5.50

*Ultimate Load is 5 times the Working Load Limit. Based on single leg sling (in-line load), or resultant load on multiple legs with an included angle less than or equal to 120°.

S-643 Weldless Rings

$\begin{aligned} & \text { Size } \\ & \text { (in) } \\ & \hline \end{aligned}$	S-643 Stock No	Working Load Limit Single Pull (lb)*	$\begin{aligned} & \text { WeightEach } \\ & \text { (Ib) } \end{aligned}$	Dimensions (in)		
				A	B	C
$7 / 8 \times 4$	1013780	7200	2.72	. 88	4.00	5.75
7/8 \times 5-1/2	1013806	5600	3.47	. 88	5.50	7.25
1×4	1013824	10800	3.69	1.00	4.00	6.00
$1-1 / 8 \times 6$	1013842	10400	6.60	1.13	6.00	8.25
$1-1 / 4 \times 5$	1013860	17000	6.82	1.25	5.00	7.50
$1-3 / 8 \times 6$	1013888	19000	10.12	1.38	6.00	8.75

[^5]- Alloy Steel - Quenched and Tempered
- Individually Proof Tested at 2 times Working Load Limit with certification.
- Proof Test certification shipped with each link.
- Sizes $1 / 2^{\prime \prime}, 5 / 8^{\prime \prime}, 3 / 4^{\prime \prime}, 7 / 8^{\prime \prime}, 1^{\prime \prime}, 1-1 / 4^{\prime \prime}$, and $1-3 / 8$ are forged.

A-341

Alloy Pear Shaped Links

QUIC-CHECK.

C

A-341 Alloy Pear Shaped Links

Size (A) (in)	A-341 Stock No	Working Load Limit		Weight Each (lb)	Dimensions (in)		
		(lb)*	(t)		B	C	F
1/2	1013575	7000	3.15	. 55	3.00	2.00	1.00
5/8	1013584	9000	4.09	1.10	3.75	2.50	1.25
3/4	1013595	12300	5.59	1.76	4.50	3.00	1.50
7/8	1013604	15000	6.81	2.82	5.25	3.50	1.75
1	1013613	24360	11.0	4.22	6.00	4.00	2.00
†† $11 / 8$	1013622	30600	13.9	6.25	6.50	4.50	2.25
$11 / 4$	1013631	36000	16.4	8.25	7.75	5.00	2.50
$13 / 8$	1013640	43000	19.5	11.25	8.25	5.50	2.75
†† 1 1/2	1013649	54300	24.7	14.25	9.00	6.00	3.00
$\dagger \dagger 15 / 8$	1013658	62600	28.4	18.50	9.75	6.50	3.25
†† $13 / 4$	1013667	84900	38.6	22.50	10.50	7.00	3.50
$\dagger \dagger 17 / 8$	1013676	95800	43.5	29.00	11.25	7.50	3.75
††2	1013685	102600	46.6	34.00	12.00	8.00	4.00
†† $21 / 4$	1013694	143100	65.0	48.00	13.50	9.00	4.50
†† $21 / 2$	1013703	147300	66.9	66.00	15.00	10.00	5.00
†† $23 / 4$	1013712	216900	98.6	88.00	16.50	11.00	5.50
†† 3	1013721	228000	103	114.00	18.00	12.00	6.00
†† $31 / 4$	1013730	262200	119	146.00	19.50	13.00	6.50
$\dagger \dagger$ 1/2	1013739	279000	126	181.00	21.00	14.00	7.00
$\dagger \dagger 4$	1013748	373000	169	271.00	24.00	16.00	8.00

*Based on single leg sling (in-line load), or resultant load on multiple legs with an included angle less than or equal to 120°. Minimum Ultimate load is 5 times the Working Load Limit. $\dagger \dagger$ Welded Link.

Quic-CHECK

G-341 / S-341 Weldless Sling Links

Size (A)(in)	Stock No.		Working Load Limit Single Pull (lb)*	Weight Each (lb)	$\begin{aligned} & \hline \text { Dimensions } \\ & \text { (in) } \\ & \hline \end{aligned}$		
	G-341 Galv.	$\begin{aligned} & \text { S-341 } \\ & \text { S.C. } \end{aligned}$			B	C	F
3/8	1013897	1013904	1800	. 23	2.25	1.50	. 75
1/2	1013913	1013922	2900	. 55	3.00	2.00	1.00
5/8	1013931	1013940	4200	1.06	3.75	2.50	1.25
3/4	1013959	1013968	6000	1.88	4.50	3.00	1.50
7/8	1013977	1013986	8300	2.75	5.25	3.50	1.75
1	1013995	1014002	10800	4.35	6.00	4.00	2.00
$11 / 4$	1014011	1014020	16750	7.60	7.75	5.00	2.50
$13 / 8$	1014039	1014048	20500	11.30	8.25	5.50	2.75

[^6]

G-291

- Forged Steel - Quenched and Tempered.
- Fatigue rated at 1-1/2 times the Working Load Limit at 20,000 cycles.
- All Bolts Hot Dip galvanized after threading (UNC).
- Furnished with standard Hot Dip galvanized hex nuts.
- Recommended for in-line pull.
- Meets or exceeds all requirements of ASME B30.26 including identification, ductility, design factor, proof load and temperature requirements. Importantly, these bolts meet other critical performance requirements including fatigue life, impact properties and material traceability, not addressed by ASME B30.26.

Regular Nut Eye Bolt

G-291 Regular Nut Eye Bolts

Shank Dia. \& Length (in)	$\begin{gathered} \text { G-291 } \\ \text { Stock No. } \end{gathered}$	Working Load Limit (lb)*	Weight Per 100 (lb)	Dimensions (in)							
				A	B	C	D	E	F	G	H
3/8 $\times 4-1 / 2$	1043338	1550	29.50	. 38	. 75	1.50	. 38	2.50	4.50	6.12	. 88
1/2 $\times 3$-1/4	1043374	2600	50.30	. 50	1.00	2.00	. 50	1.50	3.25	5.38	1.12
$1 / 2 \times 6$	1043392	2600	66.10	. 50	1.00	2.00	. 50	3.00	6.00	8.12	1.12
$1 / 2 \times 8$	1043418	2600	82.00	. 50	1.00	2.00	. 50	3.00	8.00	10.12	1.12
$1 / 2 \times 10$	1043436	2600	88.00	. 50	1.00	2.00	. 50	3.00	10.00	12.12	1.12
$1 / 2 \times 12$	1043454	2600	114.20	. 50	1.00	2.00	. 50	3.00	12.00	14.12	1.12
$5 / 8 \times 4$	1043472	5200	103.10	. 62	1.25	2.50	. 62	2.00	4.00	6.69	1.44
$5 / 8 \times 6$	1043490	5200	118.20	. 62	1.25	2.50	62	3.00	6.00	8.69	1.44
$5 / 8 \times 8$	1043515	5200	135.10	. 62	1.25	2.50	. 62	3.00	8.00	10.69	1.44
$5 / 8 \times 10$	1043533	5200	153.60	. 62	1.25	2.50	. 62	3.00	10.00	12.69	1.44
$5 / 8 \times 12$	1043551	5200	167.10	. 62	1.25	2.50	. 62	4.00	12.00	14.69	1.44
3/4 $\times 4$-1/2	1043579	7200	168.60	. 75	1.50	3.00	. 75	2.00	4.50	7.69	1.69
$3 / 4 \times 6$	1043597	7200	184.50	. 75	1.50	3.00	. 75	3.00	6.00	9.19	1.69
$3 / 4 \times 8$	1043613	7200	207.90	. 75	1.50	3.00	. 75	3.00	8.00	11.19	1.69
$3 / 4 \times 10$	1043631	7200	235.00	. 75	1.50	3.00	. 75	3.00	10.00	13.19	1.69
$3 / 4 \times 12$	1043659	7200	257.50	. 75	1.50	3.00	. 75	4.00	12.00	15.19	1.69
$3 / 4 \times 15$	1043677	7200	298.00	. 75	1.50	3.00	. 75	5.00	15.00	18.19	1.69
$7 / 8 \times 5$	1043695	10600	270.00	. 88	1.75	3.50	. 88	2.50	5.00	8.75	2.00
$7 / 8 \times 8$	1043711	10600	308.00	. 88	1.75	3.50	. 88	4.00	8.00	11.75	2.00
$7 / 8 \times 12$	1043739	10600	400.00	. 88	1.75	3.50	. 88	4.00	12.00	15.75	2.00
1×6	1043757	13300	421.00	1.00	2.00	4.00	1.00	3.00	6.00	10.31	2.31
1×9	1043775	13300	468.50	1.00	2.00	4.00	1.00	4.00	9.00	13.31	2.31
1×12	1043793	13300	540.00	1.00	2.00	4.00	1.00	4.00	12.00	16.31	2.31
1×18	1043819	13300	650.00	1.00	2.00	4.00	1.00	7.00	18.00	22.31	2.31
$1-1 / 4 \times 8$	1043837	21000	750.00	1.25	2.50	5.00	1.25	4.00	8.00	13.38	2.88
$1-1 / 4 \times 12$	1043855	21000	900.00	1.25	2.50	5.00	1.25	4.00	12.00	17.38	2.88
$1-1 / 4 \times 20$	1043873	21000	1210.00	1.25	2.50	5.00	1.25	6.00	20.00	25.38	2.88

[^7]

- Forged Steel - Quenched and Tempered.
- Fatigue rated at 1-1/2 times the Working Load Limit at 20,000 cycles.
- Working Load Limits shown are for in-line pull. For angle loading, see page 200.
- Meets or exceeds all requirements of ASME B30.26 including identification, ductilit , design factor, proof load and temperature requirements. Importantly, these bolts meet other critical performance requirements including fatigue life, impact properties and material traceability, not addressed by ASME B30.26.
- All Bolts Hot Dip galvanized after threading (UNC).
- Furnished with standard Hot Dip galvanized, heavy hex nuts.

G-277
Shoulder Nut Eye Bolts

G-277 Shoulder Nut Eye Bolts

Shank Diameter \& Length (in)	G-277 Stock No.	Working Load Limit (Ib)*	Weight Per 100 (lb)	Dimensions (in)								
				A	B	C	D	E	F	G	H	J
5/16 x 2-1/4	1045050	1200	12.50	. 31	. 62	1.12	. 25	1.50	2.25	3.50	. 69	. 56
5/16 x 4-1/4	1045078	1200	18.80	. 31	. 62	1.12	. 25	2.50	4.25	5.50	. 69	. 56
3/8 $\times 2-1 / 2$	1045096	1550	21.40	. 38	. 75	1.38	. 31	1.50	2.50	3.97	. 78	. 66
3/8 \times 4-1/2	1045112	1550	25.30	. 38	. 75	1.38	. 31	2.50	4.50	5.97	. 78	. 66
1/2 $\times 3-1 / 4$	1045130	2600	42.60	. 50	1.00	1.75	. 38	1.50	3.25	5.12	1.00	. 91
$1 / 2 \times 6$	1045158	2600	56.80	. 50	1.00	1.75	. 38	3.00	6.00	7.88	1.00	. 91
$5 / 8 \times 4$	1045176	5200	68.60	. 62	1.25	2.25	. 50	2.00	4.00	6.44	1.31	1.12
$5 / 8 \times 6$	1045194	5200	102.40	. 62	1.25	2.25	. 50	3.00	6.00	8.44	1.31	1.12
$3 / 4 \times 4-1 / 2$	1045210	7200	144.50	. 75	1.50	2.75	. 62	2.00	4.50	7.44	1.56	1.38
$3 / 4 \times 6$	1045238	7200	167.50	. 75	1.50	2.75	. 62	3.00	6.00	8.94	1.56	1.38
$7 / 8 \times 5$	1045256	10600	225.00	. 88	1.75	3.25	. 75	2.50	5.00	8.46	1.84	1.56
1×6	1045292	13300	366.30	1.00	2.00	3.75	. 88	3.00	6.00	9.97	2.09	1.81
1×9	1045318	13300	422.50	1.00	2.00	3.75	. 88	4.00	9.00	12.97	2.09	1.81
$1-1 / 4 \times 8$	1045336	21000	650.00	1.25	2.50	4.50	1.00	4.00	8.00	12.72	2.47	2.28
$1-1 / 4 \times 12$	1045354	21000	795.00	1.25	2.50	4.50	1.00	4.00	12.00	16.72	2.47	2.28
1-1/2 $\times 15$	1045372	24000	1425.00	1.50	3.00	5.50	1.25	6.00	15.00	20.75	3.00	2.75

[^8]

S-279 / M-279
Shoulder Type Machinery Eye Bolts

- Forged Steel - Quenched \& Tempered.
- Working Load Limits shown are for in-line pull. For angle loading, see page 200.
- Fatigue rated at $1-1 / 2$ times the Working Load Limit at 20,000 cycles.
- Recommended for in-line pull.
- S-279 threaded UNC.
- M-279 metric threaded.
- Meets or exceeds all requirements of ASME B30.26 including identification, ductilit , design factor, proof load and temperature requirements. Importantly, these bolts meet other critical performance requirements including fatigue life, impact properties and material traceability, not addressed by ASME B30.26.

S-279 UNC Shoulder Type Machinery Eye Bolts

Size (in)	$\begin{gathered} \text { S-279 } \\ \text { Stock No. } \end{gathered}$	Working Load Limit (lb)*	Weight Per 100 (lb)	Dimensions (in)							
				$\begin{gathered} \mathrm{A}^{* *} \\ \text { Thread } \end{gathered}$	B	C	D	E	F	G	H
$1 / 4 \times 1$	9900182	650	5.00	1/4-20	1.02	1.13	. 75	2.29	. 19	. 53	. 77
$5 / 16 \times 1-1 / 8$	9900191	1200	9.00	5/16-18	1.15	1.38	. 88	2.74	. 25	. 59	. 95
$3 / 8 \times 1-1 / 4$	9900208	1550	15.00	3/8-16	1.27	1.62	1.00	3.07	. 31	. 69	1.05
$1 / 2 \times 1-1 / 2$	9900217	2600	28.00	1/2-13	1.53	1.95	1.19	3.70	. 38	. 91	1.27
$5 / 8 \times 1-3 / 4$	9900226	5200	55.00	5/8-11	1.79	2.38	1.38	4.45	. 50	1.13	1.53
$3 / 4 \times 2$	9900235	7200	96.00	3/4-10	2.05	2.76	1.50	5.07	. 63	1.38	1.71
7/8 $\times 2-1 / 4$	9900244	10600	154.00	7/8-9	2.31	3.25	1.75	5.87	. 75	1.56	2.00
$1 \times 2-1 / 2$	9900253	13300	238.00	1-8	2.57	3.76	2.00	6.66	. 88	1.81	2.30
1-1/8 x 2-3/4	9900257	15000	320.00	1-1/8-7	2.75	4.19	2.25	7.20	. 97	2.06	2.35
$1-1 / 4 \times 3$	9900262	21000	399.00	1-1/4-7	3.09	4.50	2.50	7.95	1.00	2.28	2.73
1-1/2 $\times 3-1 / 2$	9900271	24000	720.00	1-1/2-6	3.60	5.50	3.00	9.49	1.25	2.75	3.28
$1-3 / 4 \times 3-3 / 4$	9900280	34000	1040.00	1-3/4-5	3.75	6.26	3.50	10.48	1.38	3.00	3.60
2×4	9900289	42000	1880.00	2-4-1/2	4.00	7.62	4.00	12.31	1.81	3.38	4.50
2-1/2 $\times 5$	9900298	65000	3250.00	2-1/2-4	5.00	8.76	4.50	14.88	2.12	4.25	5.50

*Ultimate Load is 5 times the Working Load Limit. Maximum Proof Load is 2 times the Working Load Limit. ** All bolts threaded UNC.

M-279 Metric

Size (mm)	M-279 Stock No.	Working Load Limit (kg)*	Weight Each (kg)	Dimensions (mm)							
				$\begin{gathered} \mathbf{A}^{* *} \\ \text { Thread } \end{gathered}$	B	C	D	E	F	G	H
M6 x 13	1045753	200	. 03	M6x 1.0	13.0	28.7	19.1	47.0	4.9	13.5	19.6
M8 $\times 13$	1045789	400	. 05	M8x 1.25	13.0	35.1	22.4	54.6	6.4	15.0	24.1
M10 $\times 17$	1045833	640	. 07	M10 1.5	17.0	41.1	25.4	64.3	7.9	17.5	26.5
M12 x 20.5	1045869	1000	. 11	M12 $\times 1.75$	20.5	49.5	30.2	77.7	9.7	23.1	32.8
M16 x 27	1045913	1800	. 25	M16 x 2.0	27.0	60.5	35.1	96.0	12.7	28.7	38.9
M20 x 30	1045995	2500	. 42	M20 x 2.5	30.0	70.0	38.1	108	16.0	35.1	43.4
M 24×36	1046029	4000	1.05	M 24×3.0	36.0	95.5	51.0	142	22.4	46.0	58.4
M 27×69.8	1046038	5000	1.42	M 27×3.0	69.8	107	57.1	183	24.6	52.3	59.7
M30 $\times 45$	1046075	6000	1.77	M30 x 3.5	45.0	114	63.5	171	25.4	58.0	69.3
M36 x 54	1046109	8500	3.12	M36 x 4.0	54.0	140	76.0	207	31.8	70.0	83.3
M 42×95.2	1046118	14000	4.58	M 42×4.5	95.2	159	88.9	266	35.0	76.2	91.4
M48 $\times 102$	1046127	17300	8.71	M 48×5.0	102	194	101	313	46.0	85.9	114
M64 x 127	1046136	29500	14.74	M64 x 6.0	127	223	114	378	53.8	108	140

[^9]
S-293

Rivet Eye Bolt

- Forged steel - Quenched and Tempered.

S-293 Rivet Eye Bolts

Shank Length (in)	S-293 Stock No.	Weight Per 100 (lb)	Dimensions (in)						
			A	B	C	D	E	F	G
$3 / 8 \times 2-1 / 2$	1043962	25.00	. 38	2.50	3.38	4.13	. 75	1.50	. 38
$3 / 8 \times 4-1 / 2$	1043980	27.60	. 38	4.50	5.38	6.13	. 75	1.50	. 38
$1 / 2 \times 3-1 / 4$	1044024	43.80	. 50	3.25	4.38	5.38	1.00	2.00	. 50
$1 / 2 \times 6$	1044042	62.50	. 50	6.00	7.13	8.13	1.00	2.00	. 50
$5 / 8 \times 4$	1044060	93.80	. 62	4.00	5.50	6.75	1.25	2.50	. 62
$5 / 8 \times 6$	1044088	113.00	. 62	6.00	7.50	8.75	1.25	2.50	. 62
$3 / 4 \times 4-1 / 2$	1044104	143.80	. 75	4.50	6.25	7.75	1.50	3.00	. 75
$3 / 4 \times 6$	1044122	162.50	. 75	6.00	7.75	9.25	1.50	3.00	. 75
$7 / 8 \times 5$	1044140	238.00	. 88	5.00	7.00	8.75	1.75	3.50	. 88
$7 / 8 \times 8$	1044168	291.00	. 88	8.00	10.00	11.75	1.75	3.50	. 88
1×6	1044186	375.00	1.00	6.00	8.38	10.38	2.00	4.00	1.00
1×9	1044202	450.00	1.00	9.00	11.38	13.38	2.00	4.00	1.00
$1-1 / 4 \times 8$	1044220	720.00	1.25	8.00	10.88	13.38	2.50	5.00	1.25
$1-1 / 4 \times 12$	1044248	855.00	1.25	12.00	14.88	17.38	2.50	5.00	1.25

S-276
Shoulder Rivet Eye Bolt

- Forged steel - Quenched and Tempered.

QUIC-CHECK ${ }^{\circ}$
Q

S-276 Shoulder Rivet Eye Bolts

Shank Dia. \& Length (in)	S-276 Stock No.	Weight Per 100 (lb)	Dimensions (in)							
			A	B	C	D	E	F	G	H
5/16 x 2-1/4	1045782	6.30	. 31	2.25	2.94	3.50	. 63	1.13	. 25	. 56
$5 / 16 \times 4-1 / 4$	1045808	14.80	. 31	4.25	4.94	5.50	. 63	1.13	. 25	. 56
3/8 x 2-1/2	1045826	18.80	. 38	2.50	3.28	3.97	. 75	1.38	. 31	. 66
3/8 x 4-1/2	1045844	25.00	. 38	4.50	5.28	5.97	. 75	1.38	. 31	. 66
1/2 $\times 3-1 / 4$	1045862	33.00	. 50	3.25	4.25	5.12	1.00	1.75	. 38	. 91
$1 / 2 \times 6$	1045880	50.00	. 50	6.00	7.00	7.88	1.00	1.75	. 38	. 91
$5 / 8 \times 4$	1045906	68.80	. 63	4.00	5.31	6.44	1.25	2.25	. 50	1.12
$5 / 8 \times 6$	1045924	75.00	. 63	6.00	7.31	8.44	1.25	2.25	. 50	1.12
3/4 $\times 4$-1/2	1045942	125.00	. 75	4.50	6.06	7.44	1.50	2.75	. 62	1.38
$3 / 4 \times 6$	1045960	150.00	. 75	6.00	7.56	8.94	1.50	2.75	. 62	1.38
$7 / 8 \times 5$	1045988	200.00	. 88	5.00	6.84	8.46	1.75	3.25	. 75	1.56
1×6	1046022	298.00	1.00	6.00	8.09	9.97	2.00	3.75	. 88	1.81
1×9	1046040	425.00	1.00	9.00	11.09	12.97	2.00	3.75	. 88	1.81
1-1/4 $\times 8$	1046068	654.00	1.25	8.00	10.47	12.72	2.50	4.50	1.00	2.28
$1-1 / 4 \times 12$	1046086	712.00	1.25	12.00	14.47	16.72	2.50	4.50	1.00	2.28
1-1/2 $\times 15$	1046102	1425.00	1.50	15.00	18.00	20.75	3.00	5.50	1.25	2.75

S-264 Pad Eye

- Forged Steel — Quenched and Tempered.
- Forged from 1035 Carbon Steel.
- Excellent welding qualities.
- Widely used on farm machinery, trucks, steel hulled marine vessels and material handling equipment.
- Reference American Welding Society specifications for proper welding procedures.

M 1 B
(1)

S-264 Pad Eyes

Size No.*	S-264 Stock No.	Weight Per 100 (lb)	Dimensions (in)						
			B	C	D	E	G	H	L
* 0	1090722	2.80	. 25	. 19	. 63	. 31	. 63	. 09	. 75
* 1	1090740	6.50	. 38	. 25	. 88	. 41	. 88	. 13	1.03
* 1-1/2	1090768	10.40	. 63	. 25	1.00	. 44	1.13	. 16	1.31
2	1090786	21.10	. 75	. 38	1.06	. 50	1.50	. 19	1.63
4	1090802	52.20	1.00	. 56	1.44	. 78	2.13	. 22	2.34
5	1090820	82.50	1.25	. 69	1.75	. 81	2.63	. 25	2.75

*Meets the requirements of Military Specification MS-51930A

- Forged Steel - Quenched and Tempered.
- Hot Dip galvanized.
- Tapped with standard UNC class 2 threads after galvanizing.
- Also available in blank (as forged) item (S-4028) or on request with metric threading ($\mathrm{M}-400$).
- Recommended for In-Line pull.
- Meets or exceeds all requirements of ASME B30.26 including identification, ductilit , design factor, proof load and temperature requirements. Importantly, these products meet other critical
 performance requirements including fatigue life, impact properties and material traceability, not addressed by ASME B30.26.

G-400 Eye Nuts

Size No.	"S" Stock Size (in)	G-400 Stock No	Std. Tap Size (in)	Working Load Limit (lb)*	Weight Each (lb)	Dimensions (in)									
						A	C	D	E	F	J	K	N	T	W
1	. 25	1090438	1/4	520	. 09	1.25	. 75	1.00	. 75	. 50	. 69	. 63	. 38	1.72	. 31
2	. 31	1090474	3/8	1250	. 17	1.62	1.00	1.20	. 83	. 56	. 81	. 89	. 50	2.09	. 41
3A	. 38	1090517	1/2	2250	. 28	2.00	1.25	1.44	1.08	. 81	1.00	1.09	. 62	2.55	. 50
4	. 50	1090535	5/8	3600	. 60	2.50	1.50	1.92	1.35	1.00	1.31	1.31	. 69	3.25	. 69
5	. 63	1090553	3/4	5200	1.00	3.00	1.75	2.38	1.59	1.12	1.50	1.57	. 88	3.89	. 84
6	. 75	1090571	7/8	7200	1.65	3.50	2.00	2.63	1.96	1.38	1.88	1.77	. 94	4.32	1.00
7	. 88	1090599	1	10000	2.69	4.00	2.25	3.06	2.21	1.56	2.13	2.02	1.07	5.01	1.19
8	1.00	1090633	1-1/4	15500	4.38	4.50	2.50	3.50	2.46	1.88	2.38	2.27	1.25	5.78	1.38
9	1.13	1090651	1-3/8	18500	5.00	5.00	2.75	4.00	2.69	2.00	2.56	2.53	1.38	6.51	1.50
10	1.25	1090679	1-1/2	22500	6.78	5.62	3.12	4.31	3.09	2.25	3.00	2.82	1.50	7.06	1.66
11	1.50	1090697	2	40000	14.60	7.12	4.10	6.20	4.09	3.13	3.75	3.68	2.06	9.91	1.94

*Working Load Limit shown is for In-Line pull. Ultimate Load is 5 times the Working Load Limit. Rating based on standard tap size.

- Forged Steel — Quenched and Tempered.
- On request: threaded to customer specification

S-405 Lifting Eyes

$\begin{aligned} & \text { Size } \\ & \text { No. } \end{aligned}$	$\begin{gathered} \text { S-405 } \\ \text { Stock No } \end{gathered}$	Working Load Limit Threaded (lb) ${ }^{*}$	Maximum Thread Diam. (in)	Weight Each (lb)	Dimensions (in)											
					A	C	D	E	F	H \dagger	J	K	L	N	T	W
1	1090269	850	. 31	. 10	1.25	. 75	1.02	. 66	. 50	. 34	. 69	. 67	. 69	. 42	2.46	. 31
2	1090287	1250	. 38	. 20	1.62	1.00	1.20	. 75	. 56	. 41	. 81	. 92	. 94	. 55	3.00	. 41
3	1090303	2250	. 50	. 50	2.00	1.25	1.44	1.00	. 81	. 53	1.13	1.13	1.25	. 68	3.69	. 50
4	1090321	3600	. 63	. 79	2.50	1.50	1.92	1.19	1.00	. 66	1.31	1.38	1.50	. 80	4.59	. 69
5	1090349	5200	. 75	1.25	3.00	1.75	2.28	1.38	1.12	. 78	1.50	1.66	1.75	. 98	5.55	. 84
6	1090367	7200	. 88	2.25	3.50	2.00	2.50	1.63	1.38	. 91	1.88	1.91	1.88	1.06	6.16	1.00
7	1090385	10000	1.00	3.25	4.00	2.25	2.92	1.88	1.56	1.03	2.13	2.16	2.06	1.20	7.07	1.19
8	1090401	12500	1.13	4.70	4.50	2.50	3.35	1.94	1.88	1.16	2.38	2.47	2.50	1.40	8.16	1.38
10	1090410	18000	1.50	9.33	5.62	3.12	3.81	2.75	2.25	1.53	3.00	2.98	3.21	1.69	9.96	1.66

[^10]

- Each base and Bundle Clip adapter has a Product Identification Code (PIC) for material tracability, the name Crosby or CG, and a size forged into it.
- Entire clip galvanized to resist corrosive and rusting action.
- Forged bases and bundle clip adapters.
- All bundle clips are individually bagged or tagged with proper application instructions and warning information.
- Clips have rolled threads.
- Bundle Clip Adapter for Soft Eye (G4460) and for Thimble Eye (G4461) kits available.
- Look for the Red-U-Bolt, your assurance of Genuine Crosby Products.
- Meets or exceeds all requirements of ASME B30.26 including manufacturing I.D. and size requirements. Importantly, these wire rope bundle clips meet material traceability not addressed by ASME B30.26.

G-460 Soft Eye / G-461 Thimble Eye Bundle Clip

Rope Size		Bundle Clip Style	Stock No.	Dimensions (in)						Weight each (lb)
(in)	(mm)			D	F	G	H	K	0	
3/4	18-20	G460	1010509	1.50	1.06	2.25	2.84	3.50	4.13	2.5
3/4	18-20	G461	1010619	1.50	1.06	2.25	2.84	3.50	2.85	2.5

Swivel Hoist Ring

Color coded to distinguish between UNC (Red) and Metric (Silver) thread types.

- Available in UNC and Metric thread sizes.
- UNC threads available in sizes from 800 pounds to 100,000 pounds Working Load Limit, with a design factor of 5 to 1 .
- Metric threads available in sizes from 400 kg to $16,900 \mathrm{~kg}$ and dual rated in both a 4 to 1 and 5 to 1 design factor.
- All Components are Alloy Steel - Quenched and Tempered.
- Designed to be used at full WLL within angular loading range.
- 100% individually proof tested to 2-1/2 times the Working Load Limit with certification and Statistically Magnetic Particle inspected. (Can be furnished 100\% Magnetic Particle inspected when requested at time of order.)
- Each product has a Product Identification Code (PIC) for material traceability along with a orking Load Limit and the name Crosby or "CG" stamped into it.
- 360° swivel and 180° pivot action.
- Fatigue rated to 20,000 cycles at 1-1/2 times the Working Load Limit.
- Individually packaged along with proper application instructions and warning information.
- Bolt is secured with E-clip, threads are grooved. This method allows for easy disassembly and assembly of hoist ring for thorough examination of all components. Replacement kits are available.
- Bolts are individually Proof Tested.
- Multiple Bolt length available to meet specific application requirements
- Zinc Plated (Yellow Chromate) finish for increased corrosion protection thru 30,000 pound size
- Meets or exceeds all the requirements of ASME B30.26 including identification, ductilit, design factor, proof load and temperature requirements. Importantly, these hoist rings meet other critical performance requirements including fatigue life, impact properties and material traceability, not addressed by ASME B30.26.

HR-125
Swivel Hoist Ring

- Top washer has the following features:
- The Working Load Limit and Recommended Torque value are permanently stamped into each washer.
- Washer is color coded for easy identification: Red - UNC thread.
- Individually Proof Tested to 2-1/2 times Working Load Limit.
- Bolt specification is an Alloy socket head cap screw to ASTM A 574.
- All threads listed are UNC.
- BOLT SIZE IDENTIFICATION: The size of the bolt will be stated as in the drawing above. Illustration shows meaning of each dimension given.
- NOTE: For Special Applications, see page 457.
- Frame 2 and larger are RFID EQUIPPED.

HR-125 UNC Threads

				Dimensions (in)								
Frame Size No.	HR-125 Stock No.	Working Load Limit (Ib) ${ }^{*}$	Torque in (ft•lbf)	$\begin{gathered} \text { Bolt Size } \\ \text { A } \ddagger \\ \hline \end{gathered}$	Effective Thread Projection Length B	C	D	Radius E	$\begin{gathered} \text { Diameter } \\ \text { F } \\ \hline \end{gathered}$	G	H	Weight Each (lb)
$1 \dagger$	1016887	800	7	5/16-18 $\times 1.50$. 58	2.72	. 97	. 46	. 34	1.87	1.12	. 37
$1 \dagger$	1016898	1000	12	$3 / 8-16 \times 1.50$. 58	2.72	. 97	. 46	. 34	1.87	1.05	. 39
2	1016909	2500	28	$1 / 2-13 \times 2.00$. 70	4.85	1.96	. 87	. 75	3.35	2.29	2.33
$2 \dagger$	1016912	2500	28	$1 / 2-13 \times 2.50$	1.20	4.85	1.96	. 87	. 75	3.35	2.29	2.36
2	1016920	4000	60	$5 / 8-11 \times 2.00$. 70	4.85	1.96	. 87	. 75	3.35	2.16	2.41
$2 \dagger$	1016924	4000	60	5/8-11 $\times 2.75$	1.45	4.85	1.96	. 87	. 75	3.35	2.16	2.47
2	1016931	5000	100	3/4-10 $\times 2.25$. 95	4.85	1.96	. 87	. 75	3.35	2.04	2.52
$2 \dagger$	1016935	5000	100	$3 / 4-10 \times 2.75$	1.45	4.85	1.96	. 87	. 75	3.35	2.04	2.59
3	1016942	7000 **	100	$3 / 4-10 \times 2.75$. 89	6.57	2.96	1.36	. 94	4.87	2.97	6.72
$3 \dagger$	1016946	7000 **	100	$3 / 4-10 \times 3.50$	1.64	6.57	2.96	1.36	. 94	4.87	2.97	6.81
3	1016953	8000	160	$7 / 8-9 \times 2.75$. 89	6.57	2.96	1.36	. 94	4.87	2.84	6.84
$3 \dagger$	1016957	8000	160	$7 / 8-9 \times 3.50$	1.64	6.57	2.96	1.36	. 94	4.87	2.84	6.96
3	1016964	10000	230	$1-8 \times 3.00$	1.14	6.57	2.96	1.36	. 94	4.87	2.72	7.09
$3 \dagger$	1016969	10000	230	$1-8 \times 4.00$	2.14	6.57	2.96	1.36	. 94	4.87	2.72	7.31
4	1016975	15000	470	1-1/4-7x4.50	2.21	8.72	3.71	1.75	1.19	6.18	3.93	14.51
5	1016986	24000	800	1-1/2-6 6.75	3.00	12.55	4.71	2.39	1.75	8.48	5.52	37.73
5	1016997	30000	1100	$2-4-1 / 2 \times 6.75$	3.00	12.55	4.71	2.39	1.75	8.48	5.02	40.69
6	1017001	50000	2100	2-1/2-4 8 8.0	4.00	16.88	5.75	3.00	2.25	11.00	8.03	88.00
7	1017005	75000	4300	$3-4 \times 10.5$	5.00	19.50	6.45	3.75	2.75	14.16	8.50	166.00
8	1017009	100000	5100	3-1/2-4 $\times 13.0$ \#	7.00	22.09	7.75	4.00	3.25	15.91	9.28	265.00

[^11]

- Top washer has the following features:
- The Working Load Limit and Recommended Torque value are permanently stamped into each washer.
- Washer is color coded for easy identification: Silver - Metric thread
- Individually Proof Tested to 2-1/2 times Working Load Limit.
- Bolt specification is a Grade 12.9 Alloy socket head cap screw to Din 912. All threads listed are metric (ASME B18.3.1m).
- Designed to be used with ferrous workpiece only.
- BOLT SIZE IDENTIFICATION: The size of the bolt will be stated as in the drawing above. Illustration shows meaning of each dimension given.
- NOTE: For Special Applications, see page 457.
- Frame 2 and larger RFID EQUIPPED.

HR-125M Metric Threads

		Working Load Limit (kg)			Dimensions (mm)								
Frame Size No.	HR-125M Stock No.	At a 5:1 Design Factor \dagger	At a 4:1 Design Factor \dagger	Torque in (Nm$)^{*}$	(A) Bolt Size \ddagger	(B)Effective Thread Projection Length	C	D	Radius E	Diameter F	G	H	Weight Each (kg)
1	1016602	400	500	10	M8X1.25X40	16.9	69.9	24.6	11.8	8.5	47.5	29.9	. 17
1	1016613	450	550	16	M10X1.50X40	16.9	69.9	24.6	11.8	8.5	47.5	28.1	. 18
2	1016624	1050	1300	38	M12X1.75X50	16.9	123	49.8	22.3	17.5	85.1	60.4	1.05
2	1016635	1900	2400	81	M16X2.00X60	26.9	123	49.8	22.3	17.5	85.1	56.3	1.11
2	1016644	2150	2700	136	M20X2.50X65	31.9	123	49.8	22.3	17.5	85.1	52.3	1.17
3	1016657	3000	3750	136	M20X2.50X75	27.8	167	75.2	34.7	25.4	124	76.6	3.09
3	1016668	4200	5250	312	M24X3.00X80	32.8	167	75.2	34.7	25.4	124	70.5	3.21
4	1016679	7000	8750	637	M30X3.50X120	61.7	222	94.2	44.5	30.5	157	102	6.53
5	1016690	11000	13750	1005	M36X4.00X150	54.0	318	120	60.7	44.5	215	142	16.8
5	1016701	12500	15600	1005	M42X4.50X160	64.0	318	120	60.7	44.5	215	136	17.4
5	1016712	13500	16900	1350	M48X5.00X160	74.0	318	120	60.7	44.5	215	130	18.0

[^12]

HR-1000

- Forged bail provides the following:
- Easily readable "Raised Lettering" showing the name Crosby or "CG" and PIC Code for material traceability.
- Greater durability providing the increased "Toughness" desired in potentially abusive field conditions
- Larger opening than standard Hoist Ring bail.
- Top washer is color coded for easy identification (Red for UNC threads and Silver for Metric threads
- The Working Load Limit and Recommended Torque value are permanently stamped into each washer.
- Individually Proof Tested to 2-1/2 times Working Load Limit.
- Available in both UNC Thread and Metric Thread style.
- BOLT SIZE IDENTIFICATION: The size of the bolt will be stated as in the drawing below. Illustration shows meaning of each dimension given.

- NOTE: For Special Applications, see page 457.
- Frame 2 and larger are RFID EQUIPPED.

HR-1000 UNC Threads

$\begin{aligned} & \text { Frame } \\ & \text { Size } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { HR-1000 } \\ & \text { Stock No. } \end{aligned}$	Working Load Limit (Ib)*	Torque in (ft•lbf)	Dimensions (in)								Weight Each (lb)
				$\begin{gathered} \text { Bolt Size } \\ \text { A } \ddagger \end{gathered}$	Eff. Thread Projection Length B	C	D	Radius E	F	G	H	
1	1068002	800	7	5/16-18 $\times 1.50$. 52	3.69	. 97	. 62	. 44	2.27	1.38	. 60
1	1068006	1000	12	3/8-16 x 1.50	. 52	3.69	. 97	. 62	. 44	2.27	1.38	. 62
2	1068010	2500	28	$1 / 2-13 \times 2.25$. 69	6.26	1.96	1.25	. 75	4.20	2.50	3.05
$2 \dagger$	1068014	2500	28	$1 / 2-13 \times 2.75$	1.19	6.26	1.96	1.25	. 75	4.20	2.50	3.07
2	1068018	4000	60	$5 / 8-11 \times 2.25$. 69	6.26	1.96	1.25	. 75	4.20	2.50	3.11
$2 \dagger$	1068022	4000	60	$5 / 8-11 \times 3.00$	1.44	6.26	1.96	1.25	. 75	4.20	2.50	3.18
2	1068026	5000	100	$3 / 4-10 \times 2.50$. 94	6.26	1.96	1.25	. 75	4.20	2.50	3.24
$2 \dagger$	1068030	5000	100	$3 / 4-10 \times 3.00$	1.44	6.26	1.96	1.25	. 75	4.20	2.50	3.30
3	1068034	7000 **	100	$3 / 4-10 \times 3.00$. 85	8.66	2.96	1.63	1.00	6.25	3.25	10.09
$3 \dagger$	1068038	7000 **	100	$3 / 4-10 \times 3.50$	1.35	8.66	2.96	1.63	1.00	6.25	3.25	10.21
3	1068042	8000	160	$7 / 8-9 \times 3.00$. 85	8.66	2.96	1.63	1.00	6.24	3.25	10.21
$3 \dagger$	1068046	8000	160	$7 / 8-9 \times 3.50$	1.35	8.66	2.96	1.63	1.00	6.24	3.25	10.40
3	1068050	10000	230	$1-8 \times 3.50$	1.35	8.66	2.96	1.63	1.00	6.24	3.25	10.50
$3 \dagger$	1068054	10000	230	$1-8 \times 4.50$	2.35	8.66	2.96	1.63	1.00	6.24	3.25	10.72
4	1068058	15000	470	1-1/4-7 5.00	2.09	11.21	3.71	2.00	1.25	7.82	4.00	21.90
4	1068062	24000	800	1-1/2-6 $\times 5.50$	2.59	11.21	3.71	2.00	1.44	7.82	4.00	23.00

HR-1000M Metric Threads

Frame Size No.	HR-1000M Stock No.	Working Load Limit (kg)*		Torque in (Nm)	Dimensions (mm)								Weight Each (kg)
		At a 5:1 Design Factor***	At a 4:1 Design Factor***		$\begin{gathered} \text { Bolt Size } \\ \text { A } \ddagger \ddagger \end{gathered}$	Eff. Thread Projection Length B	C	D	Radius E	F	G	H	
1	1068307	400	500	10	M $8 \times 1.25 \times 40$	15.2	93.7	24.6	15.7	11.2	57.7	35.1	. 3
1	1068316	450	550	16	M10 x 1.50×40	15.2	93.7	24.6	15.7	11.2	57.7	35.1	. 3
2	1068325	1050	1300	38	M12 $\times 1.75 \times 55$	15.5	162	49.8	31.8	19.1	107	63.5	1.5
2	1068334	1900	2400	81	M16 $\times 2.00 \times 65$	25.5	162	49.8	31.8	19.1	107	63.5	1.5
2	1068343	2150	2700	136	$\mathrm{M} 20 \times 2.50 \times 70$	30.5	162	49.8	31.8	19.1	107	63.5	1.6
3	1068352	3000	3750	136	$\mathrm{M} 20 \times 2.50 \times 80$	25.4	220	75.2	41.4	25.4	159	82.6	4.6
3	1068361	4200	5250	312	$\mathrm{M} 24 \times 3.00 \times 90$	35.4	220	75.2	41.4	25.4	159	82.6	4.8
4	1068370	7000**	8750	637	M $30 \times 3.50 \times 140$	66.2	285	94.2	50.8	31.8	199	102	9.7
4	1068389	11000	13750	1005	M36 x 4.00×130	56.2	285	94.2	50.8	31.8	199	102	10.2

[^13] times the Working Load Limit based on the 4:1 design factor. \dagger Long Bolts are designed to be used with soft metal (i.e., aluminum) workpiece. While the long bolts may also be used with ferrous metal (i.e.,steel \& iron) workpiece, short bolts are designed for ferrous workpieces only. \ddagger Bolt specification is an Alloy socket head cap screw to ASTM A 574 . $\ddagger \ddagger$ Bolt specification is a Grade 12.9 Alloy socket head cap screw to DIN 912. NOTE: The tightening torque values shown are based upon threads being clean, dry and free of lubrication.

HR-1000CT

- All load bearing components are heat treated, Quenched \& Tempered alloy steel.
- All components, with the exception of the retaining ring, are produced with maximum material hardness of 34 HRc . All primary load bearing components have charpy impact testing. The body, bushing, washer and bail meet impact requirements of 31 ft -lbs min. avg. at $-4^{\circ} \mathrm{F}$. The bolt meets impact requirements of $20 \mathrm{ft}-\mathrm{lbs} \mathrm{min}$. avg. at $-150^{\circ} \mathrm{F}$.
- Individually Mag inspected with certification
- Forged bail provides the following:
- Easily readable raised lettering showing the name Crosby or "CG" and PIC Code for material traceability.
- Greater durability providing the increased "Toughness" desired in potentially abusive field conditions
- Larger opening than standard Hoist Ring bail.

- Top washer is color coded for easy identification (blue for UN threads and grey for Metric threads)
- The Working Load Limit and Recommended Torque value are permanently stamped into each washer.
- Individually Proof Tested to 2 times Working Load Limit (90° and in-line).
- BOLT SIZE IDENTIFICATION: The size of the bolt will be stated as in the drawing above. Illustration shows meaning of each dimension given.
- NOTE: For Special Applications, see page 457.
- Type approval and certification in accordance with DNV O fshore Standard DNV-OS-E101, Drilling Plant, October 2013 and Standard for

Certifiation No. 2.22 Lifting Appliances.

- Frame 2 and larger are RFID EQUIPPED.
- Individually serialized.
- 100% MPI all primary load bearing components.
- Coating: Thermo-diffusion galvanized.
- Optional bolt sizes available upon request.

HR-1000CT UN Threads

Frame Size No.	$\begin{array}{\|l} \hline \text { HR-1000CT } \\ \text { Stock No. } \\ \hline \end{array}$	Working Load Limit (Ib)*	Torque (ftolbf)	Dimensions (in)								
				$\begin{gathered} \text { Bolt Size } \\ \text { A } \ddagger \\ \hline \end{gathered}$	Eff. Thread Projection Length B	C	D	Radius E	$\begin{gathered} \text { Diameter } \\ \mathrm{F} \\ \hline \end{gathered}$	G	H	Mass Each (lb)
2	6608103	1900	28	1/2-13 2.25	0.70	6.32	1.96	1.25	0.75	4.20	2.50	3
2	6608112	1900	28	$1 / 2-13 \times 2.75$	1.20	6.32	1.96	1.25	0.75	4.20	2.50	3
2	6608121	3000	60	5/8-11 $\times 2.25$	0.70	6.32	1.96	1.25	0.75	4.20	2.50	3
3	6608130	4800	100	$3 / 4-10 \times 3.00$	0.85	8.59	2.96	1.63	1.00	6.25	3.25	11
3	6608139	6200	160	$7 / 8-9 \times 3.00$	0.85	8.59	2.96	1.63	1.00	6.25	3.25	11
3	6608148	8300	230	$1-8 \times 3.50$	1.35	8.59	2.96	1.63	1.00	6.25	3.25	11
4	6608149	12500	470	1-1/4-7 $\times 5.00$	2.10	11.31	3.71	2.00	1.44	8.13	4.00	24
4	6607669	20000	800	1-1/2-6x5.50	2.60	11.31	3.71	2.00	1.44	8.13	4.00	27
4	6607727	20000	800	1-1/2-8 $\times 5.50$	2.60	11.31	3.71	2.00	1.44	8.13	4.00	27
5	6607670	28000	1100	2-4.5 7.50	3.20	15.15	4.00	2.69	1.75	11.64	5.00	69
6	6607671	45000	2100	21/2-4×9.50	3.73	19.93	5.75	3.00	2.75	14.47	5.62	157

[^14]

HR-1000MCT

- All load bearing components are heat treated, Quenched \& Tempered alloy steel.
- All components, with the exception of the retaining ring, are produced with maximum material hardness of 34 HRc . All primary load bearing components have charpy impact testing. The body, bushing, washer and bail meet impact requirements of 31 ft -lbs min. avg. at $-4^{\circ} \mathrm{F}$. The bolt meets impact requirements of $20 \mathrm{ft}-\mathrm{lbs} \mathrm{min}$. avg. at $-150^{\circ} \mathrm{F}$.
- Individually Mag inspected with certification
- Forged bail provides the following:
- Easily readable raised lettering showing the name Crosby or "CG" and PIC Code for material traceability.
- Greater durability providing the increased "Toughness" desired in potentially abusive field conditions
- Larger opening than standard Hoist Ring bail.

- Top washer is color coded for easy identification (blue for UNC threads and grey for Metric threads)
- The Working Load Limit and Recommended Torque value are permanently stamped into each washer.
- Individually Proof Tested to 2 times Working Load Limit (90° and in-line).
- BOLT SIZE IDENTIFICATION: The size of the bolt will be stated as in the drawing above. Illustration shows meaning of each dimension given.
- NOTE: For Special Applications, see page 457.
- Type approval and certification in accordance with DNV O fshore Standard DNV-OS-E101, Drilling Plant, October 2013 and Standard for Certifiation No. 2.22 Lifting Appliances.
- Frame 2 and larger are RFID EQUIPPED.
- Individually serialized.
- 100% MPI all primary load bearing components.
- Coating: Thermo-diffusion galvanized.
- Optional bolt sizes available upon request.

HR-1000MCT Metric Threads

Frame Size No.	$\begin{aligned} & \text { HR-1000MCT } \\ & \text { Stock No. } \end{aligned}$	Working Load Limit $(\mathrm{kg})^{\star}$		Torque (Nm)	Dimensions (mm)								Mass Each (kg.)
		Design Factor 5:1	Design Factor 4:1		$\begin{gathered} \text { Bolt Size } \\ \text { A } \ddagger \\ \hline \end{gathered}$	Eff. Thread Projection Length B	C	D	$\begin{array}{\|c\|} \hline \text { Radius } \\ \hline \end{array}$	Diameter F	G	H	
2	6630058	825	1,030	38	M12 $\times 1.75 \times 55$	15.6	160.6	49.7	31.8	19.1	106.7	63.5	.
2	6630059	1,350	1,690	81	M16 x 2.00×65	25.5	160.6	49.7	31.8	19.1	106.7	63.5	1
3	6630060	2,250	2,810	136	M20 x 2.50×80	25.3	218.2	75.1	41.4	25.4	158.8	82.6	5
3	6630061	3,175	3,970	312	$\mathrm{M} 24 \times 3.00 \times 90$	35.4	218.2	75.1	41.4	25.4	158.8	82.6	5
4	6630062	5,450	6,810	637	M30 $\times 3.50 \times 140$	65.9	287.3	94.1	50.8	36.6	206.5	101.6	11
4	6630063	7,450	9,310	1,005	M36 $\times 4.00 \times 130$	56.3	287.3	94.1	50.8	36.6	206.5	101.6	12
5	6630064	13,250	16,560	1,350	M48 x 5.00×180	70.7	384.9	101.6	68.3	44.5	295.6	127.0	30

*Ultimate Load is 5 times the Working Load Limit. \ddagger Bolt specification is an Alloy socket head cap screw to ASTM A320 Grade L7 or L43.
NOTE: The tightening torque values shown are based upon threads being clean, dry and free of lubrication.

SS-125UNC

- All components are 316 stainless steel, except bolt retainers, which are made from 15-7 PH (UNS 15700) magnetic stainless steel.
- Available in capacities from 400 lbs . to $50,000 \mathrm{lbs}$.
- Rated at 100 percent at 90 degree angle.
- Each product has a Product Identification Code (PIC) for material traceabilit , along with the Working Load Limit and the name Crosby or "CG" stamped into it.
- Individually proof tested to 2 times the Working Load Limit with certification
- Fatigue Rated to 20,000 cycles at $1-1 / 2$ times the Working Load Limit.
- Washer is color coded for easy identification (Red - UNC thread)
- Bolt specification is 316 Stainless Steel socket head cap screw to ASTM F 837M (316).
- All threads listed are Metric UNC.
- BOLT SIZE IDENTIFICATION: The size of the bolt will be stated as in the drawing above. Illustration shows meaning of each dimension given.
- NOTE: For Special Applications, see page 457.
- Frame 2 and larger are RFID EQUIPPED.

SS-125UNC Threads

Frame Size No.	SS-125UNC Stock No.	Working Load Limit (lb)*	Torque (ft-lbs)	Dimensions (in)								Weight Each (lb)
				Bolt Size A \ddagger	Effective Thread Projection Length B	C	D	Radius E	Diameter F	G	H	
1	1065000	400	3.5	5/16-18 $\times 1.0$. 29	2.67	. 85	. 43	. 34	1.84	1.27	. 30
1	1065004	400	3.5	$5 / 16-18 \times 1.25$. 54	2.67	. 85	. 43	. 34	1.84	1.27	. 30
1	1065008	500	6	$3 / 8-16 \times 1.25$. 54	2.67	. 85	. 43	. 34	1.84	1.27	. 30
2	1065016	1250	14	$1 / 2-13 \times 2.0$. 78	4.78	1.45	. 88	. 69	3.52	2.31	2.6
2	1065020	1250	14	$1 / 2-13 \times 2.25$	1.03	4.78	1.45	. 88	. 69	3.52	2.31	2.6
2	1065024	1250	14	1/2-13 2.5	1.28	4.78	1.45	. 88	. 69	3.52	2.31	2.6
2	1065028	2000	30	5/8-11 x 2.0	. 78	4.78	1.45	. 88	. 69	3.52	2.18	2.6
2	1065032	2000	30	$5 / 8-11 \times 2.25$	1.03	4.78	1.45	. 88	. 69	3.52	2.18	2.6
2	1065036	2000	30	5/8-11 x 2.5	1.28	4.78	1.45	. 88	. 69	3.52	2.18	2.6
2	1065040	2500	50	$3 / 4-10 \times 2.25$	1.03	4.78	1.45	. 88	. 69	3.52	2.06	3.0
2	1065044	2500	50	$3 / 4-10 \times 2.75$	1.53	4.78	1.45	. 88	. 69	3.52	2.06	3.0
3	1065048	3500	50	$3 / 4-10 \times 2.75$	1.04	6.52	2.20	1.40	. 94	5.14	3.06	7.0
3	1065052	3500	50	$3 / 4-10 \times 3.25$	1.54	6.52	2.20	1.40	. 94	5.14	3.06	7.0
3	1065056	4000	80	$7 / 8-9 \times 2.75$	1.04	6.52	2.20	1.40	. 94	5.14	2.93	7.0
3	1065060	4000	80	$7 / 8-9 \times 3.0$	1.29	6.52	2.20	1.40	. 94	5.14	2.93	7.0
3	1065064	5000	115	$1-8 \times 3.0$	1.29	6.52	2.20	1.40	. 94	5.14	2.81	7.5
3	1065068	5000	115	$1-8 \times 3.25$	1.54	6.52	2.20	1.40	. 94	5.14	2.81	7.5
3	1065072	5000	115	$1-8 \times 4.0$	2.29	6.52	2.20	1.40	. 94	5.14	2.81	7.5
4	1065080	7500	235	1-1/4-7x4.0	1.89	8.73	3.19	1.75	1.25	6.50	4.12	14.0
5	1065084	12000	400	1-1/2-6 x 5.5	2.70	12.47	4.87	2.25	1.75	8.55	6.41	34.0
5	1065088	15000	550	$2-4.5 \times 5.75$	2.96	12.47	4.87	2.25	1.75	8.55	5.91	36.0
6	1065092	25000	1050	2-1/2-4 x 8.0	4.00	16.87	6.52	3.00	2.25	11.67	8.03	88.0
6	1065096	25000	1050	2-1/2-8x8.0	4.00	16.87	6.52	3.00	2.25	11.67	8.03	88.0
7	1065100	37500	2150	$3-4 \times 10.25$	5.00	19.50	8.10	3.75	2.75	14.15	8.48	166.0
8	1065104	50000	2550	3-1/2-4×13	7.00	22.09	8.60	4.00	3.25	15.90	9.28	265.0

[^15]\ddagger Bolt specification is 316 Stainless Steel socket head cap screw to ASTM F 837 Group 1 (316).

SS-125M

- All components are 316 stainless steel, except bolt retainers, which are made from 15-7 PH (UNS 15700) magnetic stainless steel.
- Available in capacities from 200 kg to 22.300 kg .
- Rated at 100 percent at 90 degree angle.
- Each product has a Product Identification Code (PIC) for material traceabilit , along with the Working Load Limit and the name Crosby or "CG" stamped into it.
- Individually proof tested to 2 times the Working Load Limit with certification
- Fatigue Rated to 20,000 cycles at 1-1/2 times the Working Load Limit.
- Washer is color coded for easy identification (Silver - Metric thread)
- Bolt specification is 316 Stainless Steel socket head cap screw to ASTM F 837M (316).
- All threads listed are Metric (ASME/ANSI B18.3.1M).
- BOLT SIZE IDENTIFICATION: The size of the bolt will be stated as in the drawing above. Illustration shows meaning of each dimension given.
- NOTE: For Special Applications, see page 457.
- Frame 2 and larger are RFID EQUIPPED.

SS-125M Metric Threads

				Dimensions (mm)								
Frame Size No.	SS-125M Stock No.	Working Load Limit (kg)*	$\begin{aligned} & \text { Torque } \\ & \text { in } \\ & (\mathrm{Nm}) \\ & \hline \end{aligned}$	Bolt Size A \ddagger	Effective Thread Projection Length B	C	D	Radius E	Diameter F	G	H	Weight Each (kg)
1	1065203	200	4	M8 $\times 1.25$	13	68	21.6	11	8.5	47	32	. 17
1	1065207	250	8	M10 x 1.50	18	68	21.6	11	8.5	47	30	. 17
2	1065211	525	18	M12 x 1.75	19	121	37	22	17.5	89	60	1.1
2	1065215	950	40	M16 x 2.00	29	121	37	22	17.5	89	56	1.1
2	1065219	1075	68	M20 x 2.50	34	121	37	22	17.5	89	52	1.2
3	1065223	1500	68	M20 x 2.50	32	166	56	36	25	131	78	3.0
3	1065227	2100	108	M24 x 3.00	37	166	56	36	25	131	74	3.1
3	1065231	2100	108	M30 $\times 3.50$	58	206	56	36	25	131	108	3.1
4	1065235	3500	318	M30 $\times 3.50$	42	222	81	45	31	165	106	6.3
4	1065239	3500	318	M30 $\times 3.50$	62	222	81	45	31	165	106	6.4
5	1065243	5500	542	M36 $\times 4.00$	64	317	124	57	43	217	166	15.5
5	1065247	6250	542	M42 x 4.50	82	317	124	57	43	217	160	16.0
5	1065251	6750	542	$\mathrm{M} 48 \times 5.00$	82	317	124	57	43	217	154	16.8
6	1065255	11150	1423	M64 x 6.00	101	428	165	76	56	296	204	39.0
7	1065259	15750	2915	M72 x 6.00	132	495	206	95	69	359	220	74.0
8	1065263	22300	3459	M90 x 6.00	177	561	216	102	83	404	235	118.0

[^16]

- Designed to simplify the lifting and placement of steel plates used to cover trenches in streets.
- Provides a standard fitting to be used in place of products not designed for trench cover applications.
- Capacities of $5,000,10,000 \& 15,000 \mathrm{lbs}$. for plate thicknesses of $3 / 4$ " to 1-1/2".
- Detailed welding instructions included with every hoist ring.
- Forged bail provides the following:
- Easily readable raised lettering showing the name Crosby or "CG" and PIC code for material traceability.
- More durability provides the increased "Toughness" desired in potentially abusive field conditions
- 180 degree pivot and 360 degree rotation at full capacity.

- Design Factor of 5 to 1 .
- Individually Proof Tested to 2-1/2 times Working Load Limit.
- All sizes are RFID EQUIPPED.

HR-500 Trench Cover Hoist Rings Coil Threads

$\begin{aligned} & \text { HR-500 } \\ & \text { Stock No. } \end{aligned}$	Working Load Limit (Ib)*	Weight Each (lb)	Dimensions (in)								
			Coil Thread Size A	Effective Thread Projection Length B	C	D	Radius E	F	G	H	J
1017907	5000	5.6	1"-3.5	1.00	5.90	5.50	1.25	. 75	4.20	2.50	. 77
1017916	10000	15.7	1-1/4"-3.5	1.00	8.27	7.00	1.63	1.00	6.25	3.25	. 81
1017925	15000	29.8	1-1/2" -3.5	1.50	10.63	9.13	2.00	1.25	7.82	4.00	. 80

HRN-500 Trench Cover Nuts

HRN-500 Stock No.	Working Load Limit (lb)	Weight Each (lb)	Coil ThreadSize	Dimensions (in)		
				Nut Diam. K	TrenchCover Hole Diam. L	Nut Thickness M
1063405	5000	1.2	1"-3.5	3.00	3.12	. 75
1063414	5000	1.4	1"-3.5	3.00	3.12	. 88
1063423	5000	1.6	1"-3.5	3.00	3.12	1.00
1063432	10000	1.1	1-1/4"- 3.5	3.00	3.12	. 75
1063441	10000	1.3	1-1/4"-3.5	3.00	3.12	. 88
1063450	10000	1.5	1-1/4"-3.5	3.00	3.12	1.00
1063454	10000	1.9	1-1/4"- 3.5	3.00	3.12	1.25
1063458	10000	2.3	1-1/4"- 3.5	3.00	3.12	1.50
1063469	15000	2.0	1-1/2"-3.5	3.50	3.62	1.00
1063478	15000	2.6	1-1/2"-3.5	3.50	3.62	1.25
1063487	15000	3.1	1-1/2"-3.5	3.50	3.62	1.50

Trench Cover Lifting Ring Tools and Accessories

HR-500HG Hole Gauge
Aids in determining when studs and plate nuts need replacing.

Coil Thread Size (in)	HR-500HG Stock No.	Weight Each (Ib)
$1.00-3.5$	1064666	.6
$1.25-3.5$	1064675	.8
$1.50-3.5$	1064684	1.0

HR-500TC Thread Clean-Up Tool
Cleans dirt and other material as from nut threads.

Coil Thread Size (in)	HR-500TC Stock No.	Weight Each (lb)
$1.00-3.5$	1064639	1.2
$1.25-3.5$	1064648	1.7
$1.50-3.5$	1064657	1.9

HR-500WF Weld Fixture
Holds nut securely in place to ease in initial tack welding.

Coil Thread Size (in)	HR-500WF Stock No.	Weight Each (Ib)
$1.00-3.5$	1064602	1.8
$1.25-3.5$	1064611	2.1
$1.50-3.5$	1064620	2.5

HR-100 UNC

- Forged bail provides the following:
- Easily readable raised lettering showing the name Crosby or "CG" and PIC code for material traceability.
- More durability provides the increased "Toughness" desired in potentially abusive field conditions
- Larger opening than standard Hoist Ring bails.
- 180 degree pivot action at full capacity.
- Bolts included as part of assembly.
- Design Factor of 5 to 1.
- Individually Proof Tested to 2-1/2 times Working Load Limit.
- UNC Bolt specification is a Grade 8 Alloy socket head cap screw to ASTM A 574.
- Frame 2 and larger are RFID EQUIPPED.

HR-100 Pivot Hoist Rings Coil Threads

Frame Size No.	$\begin{gathered} \text { HR-100 } \\ \text { Stock No. } \end{gathered}$	Working Load Limit (Ib)*	Torque in (ft•lbf)	No. of Bolts	Weight Each (lb)	Dimensions (in)									
						$\underset{A}{\text { Bolt Size }}$	Effective Thread Projection Length B	C	$\underset{\mathbf{D}}{\text { Diameter }}$	$\underset{E}{\text { Radius }}$	F	G	H	J	K
1	1067408	2000	7	2	. 6	5/16-18x 1.25	. 82	3.43	2.00	. 62	. 44	2.27	1.38	1.00	-
2	1067417	2500	12	2	3.1	$3 / 8-16 \times 1.25$. 65	6.03	2.25	1.25	. 75	4.20	2.50	1.13	-
2	1067426	5000	28	2	3.3	1/2-13x2.00	1.40	6.03	2.63	1.25	. 75	4.20	2.50	1.50	-
3	1067435	12000	28	4	10.5	1/2-13 2.75	1.65	8.27	3.13	1.63	1.00	6.25	3.25	1.63	1.25
4	1067444	20000	60	4	22.0	5/8-11 x 3.25	1.65	10.63	4.47	2.00	1.25	7.82	4.00	2.06	1.25

[^17]

- Wide range of capacities available:
- 650 lbs . to $29,000 \mathrm{lbs}$.
- Metric sizes from 0.3 tonnes to 13 tonnes.
- Body components are Alloy Steel - Quenched and Tempered.
- Rated at 100% of Working Load Limit for angles up to 90 degrees.
- Each product is stamped with a Product Identification Code (PIC) for material traceability, along with a Working Load Limit, and the name Crosby or "CG".
- Hoist Ring body is furnished with Yellow Chromate finish for improved corrosion resistance.
- Utilize standard Crosby Red Pin ${ }^{\circledR}$ Shackles to connect to wire rope or synthetic slings. (sold separately)
- Multiple bolt lengths available to meet specific application requirements

- Individually Proof Tested to 2-1/2 times Working Load Limit.
- All sizes are RFID EQUIPPED.

HR-1200 UNC Side Pull Hoist Rings

Weight Each (lb)	Working Load Limit (lb)*	$\begin{gathered} \text { HR-1200 } \\ \text { Stock } \\ \text { No. } \\ \hline \end{gathered}$	Hoist Ring Bolt Torque (ftlbf)	$\begin{gathered} \text { Bolt } \\ \text { Size } \\ \mathbf{A} \end{gathered}$	Eff.ThreadProj.(in)B	Dimensions (in)							Recommended Shackles			
						C	D	E	F	Dia. G	H	1	$\begin{gathered} \hline \text { Red Pin }{ }^{\ominus} \text { Shackles } \\ 209,210,213, \\ 215,2130,2150 \\ \hline \end{gathered}$		Red PinWeb ShacklesS-281	
													Nominal Size (in)	$\begin{gathered} \text { WLL } \\ (\mathrm{t}) \\ \hline \end{gathered}$	Web Size (in)	$\begin{gathered} \text { WLL } \\ (\mathrm{t}) \\ \hline \end{gathered}$
. 35	650	1067700	7	5/16-18x1.50	. 59	1.93	. 72	1.00	1.56	. 80	. 85	1.43	1/2, 5/8	2, 3-1/4	2	3-1/4
. 36	800	1067704	12	3/8-16x1.50	. 59	1.93	. 72	1.00	1.56	. 80	. 85	1.43	1/2, 5/8	2, 3-1/4	2	3-1/4
1.4	2000	1067708	28	1/2-13x2.00	. 71	2.97	. 97	2.00	2.13	. 93	1.07	1.79	5/8, 3/4	3-1/4, 4-3/4	2, 1.5	3-1/4, 4-1/2
1.4	2000	1067712	28	1/2-13x2.50	1.21	2.97	. 97	2.00	2.13	. 93	1.07	1.79	5/8, 3/4	3-1/4, 4-3/4	2, 1.5	3-1/4, 4-1/2
1.5	3000	1067716	60	5/8-11x2.00	. 71	2.97	. 97	2.00	2.13	. 93	1.07	1.79	5/8, 3/4	3-1/4, 4-3/4	2, 1.5	3-1/4, 4-1/2
1.5	3000	1067720	60	5/8-11x2.75	1.46	2.97	. 97	2.00	2.13	. 93	1.07	1.79	5/8, 3/4	3-1/4, 4-3/4	2, 1.5	3-1/4, 4-1/2
4.5	5000	1067724	100	3/4-10x2.75	. 90	4.32	1.34	3.00	3.00	1.07	1.35	2.42	7/8	6-1/2	2	6-1/4
4.6	5000	1067728	100	3/4-10x3.50	1.65	4.32	1.34	3.00	3.00	1.07	1.35	2.42	7/8	6-1/2	2	6-1/4
4.6	6500	1067732	160	7/8-9x2.75	. 90	4.32	1.34	3.00	3.00	1.07	1.35	2.42	7/8	6-1/2	2	6-1/4
4.8	6500	1067736	160	7/8-9x3.50	1.65	4.32	1.34	3.00	3.00	1.07	1.35	2.42	7/8	6-1/2	2	6-1/4
4.8	8000	1067740	230	$1-8 \times 3.00$	1.15	4.32	1.34	3.00	3.00	1.07	1.35	2.42	7/8	6-1/2	2	6-1/4
5.0	8000	1067744	230	$1-8 \times 4.00$	2.15	4.32	1.34	3.00	3.00	1.07	1.35	2.42	7/8	6-1/2	2	6-1/4
10.2	14000	1067748	470	1-1/4-7x4.5	2.22	5.59	1.57	3.75	3.91	1.47	1.92	3.42	1, 1-1/8, 1-1/4	8-1/2, 9-1/2, 12	3	8-1/2
23.5	17200	1067756	800	1-1/2-6x6.5	2.98	7.31	2.06	4.75	5.19	2.11	2.41	4.29	1-3/8, 1-1/2, 1-3/4	13-1/2, 17, 25	-	-
25.3	29000	1067764	1100	$2-4.5 \times 6.5$	2.98	7.31	2.06	4.75	5.19	2.11	2.41	4.29	1-3/8, 1-1/2, 1-3/4	13-1/2, 17, 25	-	-

*Ultimate Load is 5 times the Working Load Limit.
HR-1200M Metric Side Pull Hoist Rings

Weight Each (kg)	Working Load Limit $(\mathrm{kg})^{*}$	$\begin{gathered} \text { HR- } \\ \text { 1200M } \\ \text { Stock No. } \end{gathered}$	Hoist Ring Bolt Torque (Nm)	$\begin{gathered} \text { Bolt } \\ \text { Size } \\ \text { A } \\ \hline \end{gathered}$	$\begin{array}{\|l} \text { Eff. } \\ \text { Thread } \\ \text { Proj. } \\ \text { (mm) } \\ \hline \end{array}$	Dimensions (mm)							Recommended Shackles			
						C	D	E	F	G	H	I	$\begin{gathered} \hline \text { Red Pin }{ }^{\ominus} \text { Shackles } \\ 209,210,213, \\ 215,2130,2150 \\ \hline \end{gathered}$		Red PinWeb ShacklesS-281	
													$\begin{aligned} & \hline \text { Nominal } \\ & \text { Size } \\ & \text { (in) } \\ & \hline \end{aligned}$	$\begin{gathered} \text { WLL } \\ (\mathrm{t}) \\ \hline \end{gathered}$	Web Size (in)	$\begin{gathered} \text { WLL } \\ (\mathrm{t}) \\ \hline \end{gathered}$
. 18	300	1067803	10	M8x1.25x40	16.9	49.0	18.3	25.4	39.6	20.3	21.6	36.3	1/2, 5/8	2, 3-1/4	2	3-1/4
. 18	400	1067807	16	M10x1.50x40	16.9	49.0	18.3	25.4	39.6	20.3	21.6	36.3	1/2, 5/8	2, 3-1/4	2	3-1/4
. 63	1000	1067811	38	M12x1.75x50	17.2	75.4	24.6	50.8	54.1	23.6	27.2	45.5	5/8, 3/4	3-1/4, 4-3/4	2, 1.5	3-1/4, 4-1/2
. 68	1400	1067815	81	M16x2.0x60	27.2	75.4	24.6	50.8	54.1	23.6	27.2	45.5	5/8, 3/4	3-1/4, 4-3/4	2, 1.5	3-1/4, 4-1/2
2.0	2250	1067823	136	M20x2.5x75	28.1	110	34.0	76.2	76.2	27.2	34.4	61.5	7/8	6-1/2	2	6-1/4
2.2	3500	1067827	312	M24x3.0x80	33.1	110	34.0	76.2	76.2	27.2	34.4	61.5	7/8	6-1/2	2	6-1/4
4.5	6250	1067831	637	M30x3.5×120	65.1	142	39.9	95.3	99.3	37.3	48.8	86.9	1, 1-1/8,1-1/4	8-1/2, 9-1/2, 12	3	8-1/2
10.4	7750	1067835	1005	M36x4.0x150	60.6	186	52.3	121	132	53.6	61.2	109	1-3/8, 1-1/2,1-3/4	13-1/2, 17, 25	-	-
10.7	10000	1067839	1005	M42x4.5x160	70.6	186	52.3	121	132	53.6	61.2	109	1-3/8, 1-1/2,1-3/4	13-1/2, 17, 25	-	-
11.0	13000	1067843	1350	M48x5.0x160	70.6	186	52.3	121	132	53.6	61.2	109	1-3/8, 1-1/2,1-3/4	13-1/2, 17, 25	-	-

[^18]
Grosby Rig Sate, Rig Smart Tr

The visible red QUIC-CHECK ${ }^{\circledR}$ mark indicates that the Crosby Slide-Loc ${ }^{\text {TM }}$ is ready for installation but not for lifting.

QUIC-CHECK ${ }^{\circledR}$ Q

When the red QUIC-CHECK ${ }^{\circledR}$ mark is under the slide, the Crosby Slide-Loc ${ }^{\text {Tm }}$ is ready for lifting.

CROSBY'S INNOVATIVE ALTERNATIVE TO STANDARD EYE BOLTS

The new Crosby SL-150 Slide-Loc ${ }^{\text {TM }}$ provides features not found on standard lifting eye bolts. At the center of the new design is the patent pending locking mechanism that slides to lock the bolt for faster installation, then slides back to make ready for lifting - without the need for tools.

- When compared to respective size eye bolts, the Crosby SL-150 Slide-Loc ${ }^{\mathrm{mm}}$:
- Has a larger eye opening for easy access.
- Utilizes a bail that swivels 360° to keep load aligned with the sling leg, and maintains full WLL at any angle.
- Fatigue Rated ${ }^{\circledR}$ to 20,000 cycles at $1-1 / 2$ times the WLL.
- The patent pending locking mechanism provides quicker installation, without the need for tools.
- QUIC-CHECK ${ }^{\oplus}$ mark indicates if the Crosby SL-150 Slide-Loc ${ }^{\text {™ }}$ is ready for the lift.
- Forged alloy steel and Quenched and Tempered bail provides toughness in potentially abusive field conditions.

- Meets the Machinery Directive 2006/42/EC guidelines and is marked with CE accordingly.
- Available in capacities from .5 to 3.2 metric tons.
- Bail is Forged Alloy Steel - Quenched and Tempered.
- Bail swivels 360° degrees.
- Rated at 100% for 90 degree angle.
- Fatigue rated to 20,000 cycles at 1-1/2 times the Working Load Limit.
- Meets the Machinery Directive 2006/42/EC guidelines and is marked with CE accordingly.
- Bolt specification for metric bolt is Grade 10.9 alloy cap screw to SO 898-1.
- Unique locking mechanism makes the lifting point well suited for quick attachment to load surface. No need for tools.
- Features QUIC-CHECK® markings on bail to assist in knowing when device is ready for lifting.

SL-150

Slide-Loc

Lifting Point

CE Load Raded

 QUIC-CHECK ${ }^{\circ}$

SL-150 UNC SLIDE-LOC ${ }^{\text {™ }}$ LIFT POINT

Weight Each (lb)	$\begin{gathered} \text { SL-150 } \\ \text { Stock No. } \end{gathered}$	Working Load Limit (t)*	Dimensions (in)							Effective Thread Projection Length
			$\begin{gathered} \text { Bolt Size } \\ \text { A } \\ \hline \end{gathered}$	B	C	E	F	H	J	T
0.30	1068407	0.50	$3 / 8-16 \times 1$	1.40	2.09	1.10	0.33	1.11	1.77	0.60
0.53	1068416	0.75	$1 / 2-13 \times 1-1 / 4$	1.67	2.47	1.30	0.41	1.30	2.13	0.79
1.10	1068425	1.50	$5 / 8-11 \times 1-5 / 8$	2.17	2.98	1.46	0.52	1.46	2.50	1.01
2.05	1068434	2.30	3/4-10 $\times 2$	2.71	3.59	1.72	0.63	1.72	2.98	1.26
2.16	1068443	2.30	7/8-9x2	2.71	3.61	1.72	0.63	1.72	2.98	1.23
3.73	1068452	3.20	$1-8 \times 2-1 / 2$	3.25	4.33	2.08	0.76	1.93	3.59	1.59

*Ultimate load is 4 times the Working Load Limit.

SL-150 METRIC SLIDE-LOC™ LIFT POINT

Weight Each (kg)	$\begin{aligned} & \text { SL-150M } \\ & \text { Stock No. } \end{aligned}$	Working Load Limit$(t)^{*}$	Dimensions (mm)							Effective Thread Projection Length
			$\begin{gathered} \text { Bolt Size } \\ \text { A } \\ \hline \end{gathered}$	B	C	E	F	H	J	T
. 14	1068515	0.50	M10X1.5 X 25	35.5	53.0	28.0	8.5	27.8	45.0	14.6
. 23	1068524	0.75	M12x1.75x30	42.5	62.6	33.0	10.5	32.9	54.0	18.3
. 50	1068533	1.50	M16x2x40	55.0	75.7	37.0	13.2	37.0	63.4	24.5
. 94	1068542	2.30	M20x2.5×50	68.8	91.1	43.9	16.0	43.6	75.6	31.0
1.60	1068551	3.20	M24x3x60	82.5	110.0	52.8	19.2	52.8	91.2	37.0

*Ultimate load is 4 times the Working Load Limit.

S-265
Weld-On Pivot Link

- Forged Steel — Quenched and Tempered.
- Excellent welding qualities.
- Widely used on farm machinery, trucks, steel hulled marine vessels and material handling equipment.
- Reference American Welding Society specifications for proper welding procedures.

SEE APPLICATION AND WARNING INFORMATION On Pages $208-209$ Para Español: www.thecrosbygroup.com

S-265 Weld-On Pivot Link

Working Load Limit (t)		$\begin{gathered} \text { S-265 } \\ \text { Stock No } \end{gathered}$	Weight Each (lb)	Dimensions (in)							Minimum Fillet Weld Size (in)
Design Factor $5: 1$	Design Factor 4:1			A	B	C	D	F	G	H	
1	1.2	1290740	. 88	1.57	1.42	3.27	1.38	. 51	2.60	1.65	3/32
2.5	3.2	1290768	1.32	1.77	1.73	3.90	1.65	. 71	3.19	1.89	3/32
4.2	5.3	1290786	2.65	2.17	2.38	4.84	1.93	. 87	3.90	2.24	1/4
6.4	8	1290802	5.29	2.76	2.52	5.67	2.52	1.02	4.80	2.64	1/4
12	15	1290820	13.01	3.82	3.54	7.60	3.39	1.34	6.50	3.70	5/16

- Turnbuckle assembly combinations include: Eye and Eye, Hook and Hook, Hook and Eye, Jaw and Jaw \& Jaw and Eye.
- End fittings are Quenched and Tempered or Normalized, bodies heat treated by normalizing.
- Crosby's Quenched and Tempered end fittings and normalized bodies ave enhanced impact properties for greater toughness at all temperatures.
- Hot Dip galvanized.
- Hooks are forged with a greater cross sectional area that results in a stronger hook with better fatigue properties.
- Modified UNJ thread on end fitings for improved fatigue properties. Body has UNC thread
- Turnbuckle eyes are forged elongated, by design, to maximize easy attachment in system and minimize stress in the eye. For turnbuckle sizes $1 / 4^{\prime \prime}$ through $2-1 / 2^{\prime \prime}$, a shackle one size smaller can be reeved through eye.
- Forged jaw ends are fitted with bolts and nuts on size $1 / 4^{\prime \prime}-5 / 8^{\prime \prime}$, and pins and cotter on sizes $3 / 4^{\prime \prime}$ through $2-3 / 4^{\prime \prime}$
- TURNBUCKLES RECOMMENDED FOR STRAIGHT OR IN-LINE PULL ONLY.
- Lock Nuts available for all sizes.
- Typical hardness levels, tensile strengths and ductility properties are available for all sizes.
- Turnbuckles can be furnished proof tested or magnaflux inspected with certificates if requested at time of ord
- Meets or exceeds all the requirements of ASME B30.26 including identification, ductilit , design factor, proof load and temperature requirements. Importantly, these turnbuckles meet other critical performance requirements, including fatigue life, impact properties and material traceability, not addressed by ASME B30.26.

Meets the performance requirements of Federal Specifications FF- -791b, Type 1 Form 1 - CLASS 5, and ASTM F-1145, except for those provisions required of the contractor. For additional information, see page 452.

- End fittings are Quenched and Tempered or Normalized, bodies heat treated by normalizing.
- Hot Dip galvanized steel.
- Hooks are forged with a greater cross sectional area that results in a stronger hook with better fatigue properties.
- TURNBUCKLES RECOMMENDED FOR STRAIGHT OR IN-LINE PULL ONLY.
- Modified UNJ thread on end fittings for improved fatigue properties
- Body has UNC threads.
- Lock Nuts available for all sizes (see page 198).
- Comprehensive end fitting data provided on page 194.
- Fatigue Rated.
- Meets or exceeds all requirements of ASME B30.26 including identificatio , ductility, design factor, proof load and temperature requirements. Importantly, these turnbuckles meet other critical performance requirements including fatigue life, impact properties and material traceability, not addressed by ASME B30.26.

HG-223 Hook \& Hook

Thread Dia. \& Take Up (in)	HG-223 Stock No.	Working Load Limit (Ib)*	Weight Each (lb)	$\begin{aligned} & \text { Dimensions } \\ & \text { (in) } \end{aligned}$								
				A	D	$\begin{gathered} \mathrm{E} \\ \text { Closed } \\ \hline \end{gathered}$	F	$\begin{gathered} \text { J } \\ \text { Open } \end{gathered}$	$\begin{gathered} \text { K } \\ \text { Closed } \end{gathered}$	$\begin{gathered} \text { M } \\ \text { Open } \\ \hline \end{gathered}$		BB
$\dagger 1 / 4 \times 4$	1030011	400	. 33	. 25	. 44	1.67	1.27	9.79	7.38	12.20	8.20	4.07
†5/16 $\times 4-1 / 2$	1030039	700	. 52	. 31	. 50	2.00	1.50	11.58	8.58	14.08	9.58	4.58
$\dagger 3 / 8 \times 6$	1030057	1000	. 83	. 38	. 56	2.28	1.77	15.23	10.62	17.84	11.84	6.10
$1 / 2 \times 6$	1030075	1500	1.88	. 50	. 65	3.53	2.28	17.98	13.20	20.76	14.76	6.03
$1 / 2 \times 12$	1030119	1500	2.77	. 50	. 65	3.51	2.28	30.27	19.49	33.05	21.05	12.36
$5 / 8 \times 6$	1030137	2250	3.21	. 63	. 90	4.24	2.81	19.50	14.50	22.50	16.50	6.03
$5 / 8 \times 12$	1030173	2250	4.58	. 63	. 90	4.23	2.81	31.84	20.84	34.84	22.84	12.39
$3 / 4 \times 6$	1030191	3000	4.20	. 75	. 98	5.07	3.33	21.19	15.98	24.40	18.40	6.13
$3 / 4 \times 12$	1030235	3000	6.92	. 75	. 98	5.04	3.33	33.59	22.38	36.80	24.80	12.59
$3 / 4 \times 18$	1030253	3000	8.65	. 75	. 98	5.07	3.33	45.59	28.38	48.80	30.80	18.53
$7 / 8 \times 12$	1030271	4000	9.85	. 88	1.13	5.82	3.78	34.89	23.52	38.26	26.26	12.16
1×12	1030333	5000	14.8	1.00	1.25	6.56	4.25	36.59	25.06	40.12	28.12	12.18

[^19]Meets the performance requirements of Federal Specifications FF- -791b, Type 1 Form 1-CLASS 6, and ASTM F-1145, except for those provisions required of the contractor. For additional information, see page 452.

- End fittings are Quenched and Tempered or Normalized, bodies heat treated by normalizing.
- Hot Dip galvanized steel.
- Turnbuckle eyes are forged elongated, by design, to maximize easy attachment in system and minimize stress in the eye. For turnbuckles sizes $1 / 4^{\prime \prime}$ through $1^{\prime \prime}$, a shackle one size smaller can be reeved through eye.
- Turnbuckle hooks are forged with a greater cross sectional area that results in a stronger hook with better fatigue properties.
- TURNBUCKLES RECOMMENDED FOR STRAIGHT OR IN-LINE PULL ONLY.
- Modified UNJ thread on end fittings for improved fatigue propertie
- Body has UNC threads.
- Lock Nuts available for all sizes (see page 198).
- Comprehensive end fitting data provided on pages 194 \& 195.
- Fatigue Rated.
- Meets or exceeds all requirements of ASME B30.26 including identification, ductilit , design factor, proof load and temperature requirements. Importantly, these turnbuckles meet other critical performance requirements including fatigue life, impact properties and material traceability, not addressed by ASME B30.26.

HG-225 Hook \& Eye

Thread Dia. \& Take Up (in)	HG-225 Stock No.	Working Load Limit (Ib)*	Weight Each (b)	Dimensions (in)											
				A	D	$\underset{\text { Closed }}{\mathrm{E}}$	F	$\underset{\text { Open }}{\text { J }}$	$\begin{gathered} \text { K } \\ \text { Closed } \end{gathered}$	M Open	$\stackrel{N}{\mathrm{~N}} \mathrm{Closed}$	R	S		BB
† 1/4 $\times 4$	1030636	400	. 31	. 25	. 44	1.67	1.27	11.66	7.66	12.29	8.29	. 81	. 34	1.76	4.07
†5/16 $\times 4-1 / 2$	1030654	700	. 50	. 31	. 50	2.00	1.50	13.50	9.00	14.28	9.78	. 95	. 44	2.20	4.58
† $3 / 8 \times 6$	1030672	1000	. 79	. 38	. 56	2.28	1.76	17.09	11.09	18.04	12.04	1.13	. 53	2.48	6.10
$1 / 2 \times 6$	1030690	1500	1.80	. 50	. 65	3.53	2.28	19.57	13.57	20.79	14.79	1.41	. 71	3.56	6.03
$1 / 2 \times 12$	1030734	1500	2.70	. 50	. 65	3.51	2.28	31.86	19.86	33.08	21.08	1.41	. 71	3.54	12.36
$5 / 8 \times 6$	1030752	2250	2.98	. 63	. 90	4.24	2.81	21.11	15.11	22.61	16.61	1.80	. 88	4.35	6.03
$5 / 8 \times 12$	1030798	2250	4.35	. 63	. 90	4.23	2.81	33.45	21.45	34.95	22.95	1.80	. 88	4.34	12.39
$3 / 4 \times 6$	1030814	3000	4.21	. 75	. 98	5.07	3.33	22.61	16.61	24.45	18.45	2.09	1.00	5.12	6.13
$3 / 4 \times 12$	1030850	3000	6.52	. 75	. 98	5.04	3.33	35.01	23.01	36.85	24.85	2.09	1.00	5.09	12.59
$3 / 4 \times 18$	1030878	3000	8.24	. 75	. 98	5.07	3.33	47.01	29.01	48.85	30.85	2.09	1.00	5.12	18.53
$7 / 8 \times 12$	1030896	4000	9.34	. 88	1.13	5.82	3.78	36.11	24.11	38.23	26.23	2.38	1.25	5.79	12.16
1×12	1030958	5000	13.9	1.00	1.25	6.56	4.25	37.65	25.65	40.06	28.06	3.00	1.43	6.50	12.18

[^20]
Eye \& Eye Turnbuckles

Meets the performance requirements of Federal Specifications FF- -791b, Type 1 Form 1 -CLASS 4, and ASTM F-1145, except for those provisions required of the contractor. For additional information, see page 452.

- End fittings are Quenched and Tempered or Normalized, bodies heat treated by normalizing.
- Hot Dip galvanized steel.
- Turnbuckle eyes are forged elongated, by design, to maximize easy attachment in system and minimize stress in the eye. For turnbuckle sizes $1 / 4^{\prime \prime}$ through 2-1/2", a shackle one size smaller can be reeved through eye.
- Modified UNJ thread on end fittings for improved fatigue properties. Body has UNC thread
- TURNBUCKLES RECOMMENDED FOR STRAIGHT OR IN-LINE PULL ONLY.
- Lock Nuts available for all sizes (see page 198).
- Comprehensive end fitting data provided on page 195.
- Fatigue Rated.
- Meets or exceeds all requirements of ASME B30.26 including identification, ductilit, design factor, proof load and temperature requirements. Importantly, these turnbuckles meet other critical performance requirements including fatigue life, impact properties and material traceability, not addressed by ASME B30.26.

HG-226 Eye \& Eye

Thread Dia. \& Take Up (in)	HG-226 Stock No.	Working Load Limit (Ib)*	Weight Each (lb)	Dimensions (in)								
				A	$\begin{gathered} \text { J } \\ \text { Open } \end{gathered}$	Closed	M Open	N Closed	R	S		BB
† 1/4 $\times 4$	1031252	500	. 29	. 25	11.94	7.94	12.38	8.38	. 81	. 34	1.76	4.07
†5/16 x 4-1/2	1031270	800	. 48	. 31	13.92	9.42	14.48	9.98	. 95	. 44	2.20	4.58
$\dagger 3 / 8 \times 6$	1031298	1200	. 75	. 38	17.56	11.56	18.24	12.24	1.13	. 53	2.48	6.10
$1 / 2 \times 6$	1031314	2200	1.72	. 50	19.94	13.94	20.82	14.82	1.41	. 71	3.56	6.03
$1 / 2 \times 12$	1031350	2200	2.63	. 50	32.23	20.23	33.11	21.11	1.41	. 71	3.54	12.36
$5 / 8 \times 6$	1031378	3500	2.75	. 63	21.72	15.72	22.72	16.72	1.80	. 88	4.35	6.03
$5 / 8 \times 12$	1031412	3500	4.12	. 63	34.06	22.06	35.06	23.06	1.80	. 88	4.34	12.39
$3 / 4 \times 6$	1031430	5200	4.22	. 75	23.24	17.24	24.50	18.50	2.09	1.00	5.12	6.13
$3 / 4 \times 12$	1031476	5200	6.12	. 75	35.64	23.64	36.90	24.90	2.09	1.00	5.09	12.59
$3 / 4 \times 18$	1031494	5200	7.83	. 75	47.64	29.64	48.90	30.90	2.09	1.00	5.12	18.53
$7 / 8 \times 12$	1031519	7200	8.83	. 88	36.70	24.70	38.20	26.20	2.38	1.25	5.79	12.16
$7 / 8 \times 18$	1031537	7200	11.5	. 88	49.17	31.17	50.67	32.67	2.38	1.25	5.79	18.63
1×6	1031555	10000	9.62	1.00	26.24	20.24	28.00	22.00	3.00	1.43	6.50	6.18
1×12	1031573	10000	13.0	1.00	38.24	26.24	40.00	28.00	3.00	1.43	6.50	12.18
1×18	1031591	10000	16.3	1.00	50.24	32.24	52.00	34.00	3.00	1.43	6.50	18.18
1×24	1031617	10000	20.2	1.00	62.84	38.84	64.60	40.60	3.00	1.43	6.47	24.84
$1-1 / 4 \times 12$	1031635	15200	19.9	1.25	42.14	30.14	44.38	32.38	3.59	1.82	8.49	12.06
$1-1 / 4 \times 18$	1031653	15200	23.8	1.25	54.14	36.14	56.38	38.38	3.59	1.82	8.49	18.06
$1-1 / 4 \times 24$	1031671	15200	27.8	1.25	66.70	42.70	68.94	44.94	3.59	1.82	8.49	24.62
$1-1 / 2 \times 12$	1031699	21400	28.7	1.50	44.24	32.24	46.74	34.74	4.09	2.12	9.46	12.32
1-1/2 $\times 18$	1031715	21400	34.1	1.50	56.24	38.24	58.74	40.74	4.09	2.12	9.46	18.32
$1-1 / 2 \times 24$	1031733	21400	39.6	1.50	68.86	44.86	71.36	47.36	4.09	2.12	9.46	24.94
$1-3 / 4 \times 18$	1031779	28000	50.7	1.75	57.38	39.38	60.38	42.38	4.65	2.38	9.97	18.37
$1-3 / 4 \times 24$	1031797	28000	58.2	1.75	69.38	45.38	72.38	48.38	4.65	2.38	9.97	24.37
2×24	1031813	37000	83.5	2.00	75.68	51.68	79.18	55.18	5.81	2.69	13.03	24.48
2-1/2 x 24	1031831	60000	149	2.50	79.18	55.18	83.18	59.18	6.49	3.12	13.76	24.60
2-3/4 $\times 24$	1031859	75000	174	2.75	81.34	57.34	85.84	61.84	7.00	3.25	15.09	24.65

[^21]

Meets the performance requirements of Federal Specifications FF--791b, Type 1 Form 1 - CLASS 8, and ASTM F-1145, except for those provisions required of the contractor. For additional information, see page 452.

- End fittings are Quenched and Tempered or Normalized, bodies heat treated by normalizing.
- Hot Dip galvanized steel.
- Turnbuckles eyes are forged and elongated, by design, to maximize easy attachment in system and minimize stress in the eye. For turnbuckles size $1 / 4^{\prime \prime}$ through $2-1 / 2^{\prime \prime}$, a shackle one size smaller can be reeved through eye.
- Forged jaw ends are fitted with bolts and nuts for $1 / 4^{\prime \prime}$ through $5 / 8^{\prime \prime}$, and pins and cotters on $3 / 4^{\prime \prime}$ through 2-3/4" sizes.
- Modified UNJ thread on end fittings for improved fatigue properties
- Body has UNC threads.
- TURNBUCKLES RECOMMENDED FOR STRAIGHT OR IN-LINE PULL ONLY.
- Lock Nuts available for all sizes (see page 198).
- Comprehensive End fitting data on pages 195 \& 196
- Fatigue Rated.
- Meets or exceeds all requirements of ASME B30.26 including identification, ductilit , design factor, proof load and temperature requirements. Importantly, these turnbuckles meet other critical performance requirements including fatigue life, impact properties and material traceability, not addressed by ASME B30.26.

HG-227 Jaw \& Eye

Thread Dia. \& Take Up (in)	$\begin{gathered} \text { HG-227 } \\ \text { Stock } \\ \text { No. } \\ \hline \end{gathered}$	Working Load Limit (Ib)*	Weight Each (lb)	Dimensions (in)											
				A	B	$\begin{gathered} \text { E } \\ \text { Closed } \end{gathered}$	G	J Open	K Closed	M Open	N Closed	R	S		BB
$\dagger 1 / 4 \times 4$	1031877	500	. 33	. 25	. 45	1.66	. 64	11.57	7.57	12.28	8.28	. 81	. 34	1.76	4.07
$\dagger 5 / 16 \times 4-1 / 2$	1031895	800	. 52	. 31	. 50	2.02	. 87	13.50	9.00	14.30	9.80	. 95	. 44	2.20	4.58
$\dagger 3 / 8 \times 6$	1031911	1200	. 80	. 38	. 53	2.11	. 85	16.91	10.91	17.87	11.87	1.13	. 53	2.48	6.10
$1 / 2 \times 6$	1031939	2200	1.77	. 50	. 64	3.22	1.07	19.30	13.30	20.48	14.48	1.41	. 71	3.56	6.03
$1 / 2 \times 9$	1031957	2200	2.25	. 50	. 64	3.20	1.07	25.59	16.59	26.77	17.77	1.41	. 71	3.54	9.36
$1 / 2 \times 12$	1031975	2200	2.67	. 50	. 64	3.20	1.07	31.59	19.59	32.77	20.77	1.41	. 71	3.54	12.36
$5 / 8 \times 6$	1031993	3500	2.98	. 63	. 79	3.90	1.32	20.73	14.73	22.27	16.27	1.80	. 88	4.35	6.03
$5 / 8 \times 9$	1032019	3500	3.72	. 63	. 79	3.89	1.32	27.07	18.07	28.61	19.61	1.80	. 88	4.34	9.39
$5 / 8 \times 12$	1032037	3500	4.35	. 63	. 79	3.89	1.32	33.07	21.07	34.61	22.61	1.80	. 88	4.34	12.39
$3 / 4 \times 6$	1032055	5200	4.51	. 75	. 97	4.71	1.52	22.17	16.17	24.09	18.09	2.09	1.00	5.12	6.13
$3 / 4 \times 9$	1032073	5200	5.56	. 75	. 97	4.68	1.52	28.57	19.57	30.49	21.49	2.09	1.00	5.09	9.59
$3 / 4 \times 12$	1032091	5200	6.42	. 75	. 97	4.68	1.52	34.57	22.57	36.49	24.49	2.09	1.00	5.09	12.59
$3 / 4 \times 18$	1032117	5200	8.14	. 75	. 97	4.71	1.52	46.57	28.57	48.49	30.49	2.09	1.00	5.12	18.53
$7 / 8 \times 12$	1032135	7200	9.10	. 88	1.16	5.50	1.77	35.68	23.68	37.91	25.91	2.38	1.25	5.79	12.16
$7 / 8 \times 18$	1032153	7200	11.6	. 88	1.16	5.50	1.77	48.15	30.15	50.38	32.38	2.38	1.25	5.79	18.63
1×6	1032171	10000	10.0	1.00	1.34	6.09	2.05	25.03	19.03	27.59	21.59	3.00	1.43	6.50	6.18
1×12	1032199	10000	13.4	1.00	1.34	6.09	2.05	37.03	25.03	39.59	27.59	3.00	1.43	6.50	12.18
1×18	1032215	10000	16.7	1.00	1.34	6.09	2.05	49.03	31.03	51.59	33.59	3.00	1.43	6.50	18.18
1×24	1032233	10000	20.6	1.00	1.34	6.06	2.05	61.63	37.63	64.19	40.19	3.00	1.43	6.47	24.84
1-1/4 $\times 12$	1032251	15200	20.9	1.25	1.84	8.09	2.82	40.76	28.76	43.98	31.98	3.59	1.82	8.49	12.06
$1-1 / 4 \times 18$	1032279	15200	24.8	1.25	1.84	8.09	2.82	52.76	34.76	55.98	37.98	3.59	1.82	8.49	18.06
$1-1 / 4 \times 24$	1032297	15200	28.8	1.25	1.84	8.09	2.82	65.32	41.32	68.54	44.54	3.59	1.82	8.49	24.62
$1-1 / 2 \times 12$	1032313	21400	30.6	1.50	2.06	8.93	2.81	42.50	30.50	46.21	34.21	4.09	2.12	9.46	12.32
$1-1 / 2 \times 18$	1032331	21400	36.0	1.50	2.06	8.93	2.81	54.50	36.50	58.21	40.21	4.09	2.12	9.46	18.32
$1-1 / 2 \times 24$	1032359	21400	41.5	1.50	2.06	8.93	2.81	67.12	43.12	70.83	46.83	4.09	2.12	9.46	24.94
$1-3 / 4 \times 18$	1032395	28000	52.1	1.75	2.60	9.36	3.35	55.37	37.37	59.77	41.77	4.65	2.38	9.97	18.37
$1-3 / 4 \times 24$	1032411	28000	59.7	1.75	2.60	9.36	3.35	67.37	43.37	71.77	47.77	4.65	2.38	9.97	24.37
2×24	1032439	37000	89.9	2.00	2.62	11.80	3.74	72.66	48.66	77.95	53.95	5.81	2.69	13.03	24.48
2-1/2 $\times 24$	1032457	60000	158	2.50	3.06	13.26	4.44	76.08	52.08	82.68	58.68	6.49	3.12	13.76	24.60
$2-3 / 4 \times 24$	1032475	75000	187	2.75	3.69	14.92	4.19	78.05	54.05	85.67	61.67	7.00	3.25	15.09	24.65

[^22]

Meets the performance requirements of Federal Specifications FF- -791b, Type 1 Form 1-CLASS 7, and ASTM F-1145, except for those provisions required of the contractor. For additional information, see page 452.

- End fittings are Quenched and Tempered or Normalized, bodies heat treated by normalizing.
- Hot Dip galvanized steel.
- TURNBUCKLES RECOMMENDED FOR STRAIGHT OR IN-LINE PULL ONLY.
- Forged jaw ends are fitted with bolts and nuts for $1 / 4^{\prime \prime}$ through $5 / 8^{\prime \prime}$, and pins and cotters on $3 / 4^{\prime \prime}$ through 2-3/4" sizes.
- Modified UNJ thread on end fittings for improved fatigue propertie
- Body has UNC threads.
- Lock Nuts available for all sizes (see page 198).
- Comprehensive end fitting data provided on page 196.
- Fatigue Rated.
- Meets or exceeds all requirements of ASME B30.26 including identification, ductilit, design factor, proof load and temperature requirements. Importantly, these turnbuckles meet other critical performance requirements including fatigue life, impact properties and material traceability, not addressed by ASME B30.26.

"Bix Pancur Poived
HG-228 Jaw \& Jaw

Thread Dia. \& Take Up (in)	HG-228 Stock No.	Working Load Limit (lb)*	Weight Each (lb)	Dimensions (in)								
				A	B	$\begin{gathered} \text { E } \\ \text { Closed } \end{gathered}$	G	$\underset{\text { Open }}{\mathbf{J}}$	$\begin{gathered} \mathbf{K} \\ \text { Closed } \end{gathered}$	M Open	$\begin{gathered} \mathrm{N} \\ \text { Closed } \end{gathered}$	BB
$\dagger 1 / 4 \times 4$	1032493	500	. 37	. 25	. 45	1.66	. 64	11.19	7.19	12.18	8.18	4.07
†5/16 x 4-1/2	1032518	800	. 56	. 31	. 50	2.02	. 87	13.07	8.57	14.12	9.62	4.58
$\dagger 3 / 8 \times 6$	1032536	1200	. 85	. 38	. 53	2.11	. 85	16.25	10.25	17.50	11.50	6.10
$1 / 2 \times 6$	1032554	2200	1.82	. 50	. 64	3.22	1.07	18.65	12.65	20.14	14.14	6.03
$1 / 2 \times 9$	1032572	2200	2.29	. 50	. 64	3.20	1.07	24.94	15.94	26.43	17.43	9.36
1/2 $\times 12$	1032590	2200	2.71	. 50	. 64	3.20	1.07	30.94	18.94	32.43	20.43	12.36
$5 / 8 \times 6$	1032616	3500	3.21	. 63	. 79	3.90	1.32	19.74	13.74	21.82	15.82	6.03
$5 / 8 \times 9$	1032634	3500	3.95	. 63	. 79	3.89	1.32	26.08	17.08	28.16	19.16	9.39
$5 / 8 \times 12$	1032652	3500	4.58	. 63	. 79	3.89	1.32	32.08	20.08	34.16	22.16	12.39
$3 / 4 \times 6$	1032670	5200	4.80	. 75	. 97	4.71	1.52	21.09	15.09	23.68	17.68	6.13
$3 / 4 \times 9$	1032698	5200	5.85	. 75	. 97	4.68	1.52	27.49	18.49	30.08	21.08	9.59
$3 / 4 \times 12$	1032714	5200	6.72	. 75	. 97	4.68	1.52	33.49	21.49	36.08	24.08	12.59
$3 / 4 \times 18$	1032732	5200	8.45	. 75	. 97	4.71	1.52	45.49	27.49	48.08	30.08	18.53
$7 / 8 \times 12$	1032750	7200	9.37	. 88	1.16	5.50	1.77	34.65	22.65	37.62	25.62	12.16
$7 / 8 \times 18$	1032778	7200	11.8	. 88	1.16	5.50	1.77	47.12	29.12	50.09	32.09	18.63
1×6	1032796	10000	10.4	1.00	1.34	6.09	2.05	23.82	17.82	27.18	21.18	6.18
1×12	1032812	10000	13.8	1.00	1.34	6.09	2.05	35.82	23.82	39.18	27.18	12.18
1×18	1032830	10000	17.1	1.00	1.34	6.09	2.05	47.82	29.82	51.18	33.18	18.18
1×24	1032858	10000	21.0	1.00	1.34	6.06	2.05	60.42	36.42	63.78	39.78	24.84
1-1/4 $\times 12$	1032876	15200	21.9	1.25	1.84	8.09	2.82	39.37	27.37	43.58	31.58	12.06
$1-1 / 4 \times 18$	1032894	15200	25.9	1.25	1.84	8.09	2.82	51.37	33.37	55.58	37.58	18.06
$1-1 / 4 \times 24$	1032910	15200	29.8	1.25	1.84	8.09	2.82	63.93	39.93	68.14	44.14	24.62
$1-1 / 2 \times 12$	1032938	21400	32.6	1.50	2.06	8.93	2.81	40.76	28.76	45.68	33.68	12.32
$1-1 / 2 \times 18$	1032956	21400	38.0	1.50	2.06	8.93	2.81	52.76	34.76	57.68	39.68	18.32
$1-1 / 2 \times 24$	1032974	21400	43.5	1.50	2.06	8.93	2.81	65.38	41.38	70.30	46.30	24.94
$1-3 / 4 \times 18$	1033018	28000	53.5	1.75	2.60	9.36	3.35	53.35	35.35	59.16	41.16	18.37
$1-3 / 4 \times 24$	1033036	28000	61.1	1.75	2.60	9.36	3.35	65.35	41.35	71.16	47.16	24.37
2×24	1033054	37000	96.3	2.00	2.62	11.80	3.74	69.64	45.64	76.72	52.72	24.48
2-1/2 x 24	1033072	60000	167	2.50	3.06	13.26	4.44	72.97	48.97	82.18	58.18	24.60
2-3/4 $\times 24$	1033090	75000	199	2.75	3.69	14.92	4.19	74.75	50.75	85.50	61.50	24.65

[^23]

- Quenched and Tempered or Normalized.
- Hot Dip galvanized steel.
- Hooks are forged with a greater cross sectional area that results in a stronger hook with better fatigue properties.
- Modified UNJ thread for improved fatigue properties.
- Fatigue Rated.

HG-4037 Hook End Fittings

Shank Take Up (in)	RH Hook Stock No.	LH Hook Stock No.	Working Load Limit (lb)	Weight Each (lb)	Dimensions (in)								
					A	B	C	D	F	G	H	1	L
* 1/4 x 4	1070012	1070539	400	. 09	. 25	. 25	. 41	. 44	1.27	. 50	2.59	3.44	4.10
* $5 / 16 \times 4-1 / 2$	1070030	1070557	700	. 15	. 31	. 31	. 50	. 50	1.50	. 56	3.00	4.01	4.79
* $3 / 8 \times 6$	1070058	1070575	1000	. 27	. 38	. 38	. 61	. 56	1.76	. 62	3.88	5.00	5.92
$1 / 2 \times 6$	1070076	1070593	1500	. 59	. 50	. 50	. 78	. 65	2.28	. 82	4.19	6.19	7.38
$1 / 2 \times 12$	1070110	1070637	1500	. 75	. 50	. 50	. 78	. 65	2.28	. 82	7.19	9.19	10.38
$5 / 8 \times 6$	1070138	1070655	2250	1.05	. 63	. 63	1.00	. 90	2.81	1.00	4.44	6.75	8.25
$5 / 8 \times 12$	1070174	1070691	2250	1.31	. 63	. 63	1.00	. 84	2.81	1.00	7.44	9.75	11.25
$3 / 4 \times 6$	1070192	1070717	3000	1.35	. 75	. 75	1.21	. 98	3.33	1.13	4.56	7.43	9.20
$3 / 4 \times 12$	1070236	1070753	3000	2.13	. 75	. 75	1.21	. 98	3.33	1.13	7.56	10.43	12.20
$3 / 4 \times 18$	1070254	1070771	3000	2.51	. 75	. 75	1.21	. 98	3.33	1.13	10.56	13.43	15.20
$7 / 8 \times 12$	1070272	1070799	4000	3.12	. 88	. 88	1.37	1.13	3.78	1.26	7.81	11.13	13.13
$7 / 8 \times 18$	1070290	1070815	4000	3.62	. 88	. 88	1.37	1.13	3.78	1.26	10.81	14.13	16.13
1×6	1070316	1070833	5000	3.96	1.00	1.00	1.53	1.25	4.25	1.38	5.06	8.84	11.06
1×12	1070334	1070851	5000	4.72	1.00	1.00	1.53	1.25	4.25	1.38	8.06	11.84	14.06

* Mechanical Galvanized

- Quenched and Tempered or Normalized.
- Hot Dip galvanized steel.
- Turnbuckle eyes are forged elongated, by design, to maximize easy attachment in system and minimize stress in the eye. For turnbuckle sizes $1 / 4^{\prime \prime}$ through 2-1/2", a shackle one size smaller can be reeved through eye.
- Modified UNJ thread for improved fatigue properties.
- Fatigue Rated.

HG -4037
Eye End Fitting

HG-4037 Eye End Fittings

Shank Take Up (in)	RH Eye Stock No.	LH Eye Stock No.	Working Load Limit (lb)	Weight Each (lb)	Dimensions (in)						
					A	H	R	S	U	V	W
* 1/4 $\times 4$	1071057	1071672	500	. 07	. 25	2.59	. 81	. 34	. 22	. 78	4.19
* $5 / 16 \times 41 / 2$	1071075	1071690	800	. 13	. 31	3.00	. 95	. 44	. 28	1.00	4.99
* 3/8 $\times 6$	1071093	1071716	1200	. 23	. 38	3.88	1.13	. 53	. 34	1.21	6.12
$1 / 2 \times 6$	1071119	1071734	2200	. 51	. 50	4.19	1.41	. 71	. 44	1.59	7.41
$1 / 2 \times 9$	1071137	1071752	2200	. 59	. 50	5.69	1.41	. 71	. 44	1.59	8.91
1/2 $\times 12$	1071155	1071770	2200	. 68	. 50	7.19	1.41	. 71	. 44	1.59	10.41
$5 / 8 \times 6$	1071173	1071798	3500	. 82	. 63	4.44	1.80	. 88	. 50	1.88	8.36
$5 / 8 \times 9$	1071191	1071814	3500	. 95	. 63	5.94	1.80	. 88	. 50	1.88	9.86
$5 / 8 \times 12$	1071217	1071832	3500	1.08	. 63	7.44	1.80	. 88	. 50	1.88	11.36
$3 / 4 \times 6$	1071235	1071850	5200	1.36	. 75	4.56	2.09	1.00	. 63	2.26	9.25
$3 / 4 \times 9$	1071253	1071878	5200	1.55	. 75	6.06	2.09	1.00	. 63	2.26	10.75
$3 / 4 \times 12$	1071271	1071896	5200	1.73	. 75	7.56	2.09	1.00	. 63	2.26	12.25
$3 / 4 \times 18$	1071299	1071912	5200	2.10	. 75	10.56	2.09	1.00	. 63	2.26	15.25
$7 / 8 \times 12$	1071315	1071930	7200	2.61	. 88	7.81	2.38	1.25	. 75	2.75	13.10
$7 / 8 \times 18$	1071333	1071958	7200	3.12	. 88	10.81	2.38	1.25	. 75	2.75	16.10
1×6	1071351	1071976	10000	3.15	1.00	5.06	3.00	1.43	. 88	3.19	11.00
1×12	1071379	1071994	10000	3.81	1.00	8.06	3.00	1.43	. 88	3.19	14.00
1×18	1071397	1072010	10000	4.48	1.00	11.06	3.00	1.43	. 88	3.19	17.00
1×24	1071413	1072038	10000	5.15	1.00	14.06	3.00	1.43	. 88	3.19	20.00
1-1/4 $\times 12$	1071431	1072056	15200	7.07	1.25	8.38	3.59	1.82	1.12	4.06	16.19
$1-1 / 4 \times 18$	1071459	1072074	15200	8.12	1.25	11.38	3.59	1.82	1.12	4.06	19.19
$1-1 / 4 \times 24$	1071477	1072092	15200	9.16	1.25	14.38	3.59	1.82	1.12	4.06	22.19.
1-1/2 12	1071495	1072118	21400	10.3	1.50	8.75	4.09	2.12	1.25	4.62	17.37
1-1/2 18	1071510	1072136	21400	11.8	1.50	11.75	4.09	2.12	1.25	4.62	20.37
$1-1 / 2 \times 24$	1071538	1072154	21400	13.3	1.50	14.75	4.09	2.12	1.25	4.62	23.37
$1-3 / 4 \times 18$	1071574	1072190	28000	17.5	1.75	12.16	4.65	2.38	1.50	5.38	21.19
$1-3 / 4 \times 24$	1071592	1072216	28000	19.5	1.75	15.16	4.65	2.38	1.50	5.38	24.19
2×24	1071618	1072234	37000	28.9	2.00	15.59	5.81	2.69	1.75	6.19	27.59
2-1/2 x 24	1071636	1072252	60000	46.4	2.50	17.56	6.50	3.12	2.00	7.12	29.59
$2-3 / 4 \times 24$	1071654	1072270	75000	60.2	2.75	17.69	7.00	3.25	2.25	7.75	30.92

* Mechanical Galvanized

Turnbuckles - Jaw End Fittings

HG-4037 Jaw End Fittings

- Quenched and Tempered or Normalized.
- Hot dip galvanized steel.
- Forged jaw ends are fitted with bolts and nuts on sizes $1 / 4^{\prime \prime}$ through $5 / 8^{\prime \prime}$, and pins and cotters on sizes $3 / 4^{\prime \prime}$ through $2-3 / 4^{\prime \prime}$.
- Modified UNJ thread for improved fatigue properties.
- Fatigue Rated.

HG-4037 Jaw End Fittings

Shank Take Up (in)	RH Jaw Stock No.	LH Jaw Stock No.	Working Load Limit (lb)	Weight Each (lb)	Dimensions (in)										
					A	B	C	D	F	H	I Nom.	L Nom.	Y	MM	$\begin{aligned} & \hline \text { OO } \\ & \text { Bolt } \\ & \text { Pin } \\ & \hline \end{aligned}$
* 1/4 $\times 4$	1072298	1072911	500	. 11	. 25	. 45	. 91	. 30	. 63	2.59	3.72	4.09	1.13	1.41	25
* $5 / 16 \times 41 / 2$	1072314	1072939	800	. 17	. 31	. 50	1.02	. 30	. 69	3.00	4.41	4.81	1.39	1.41	. 25
* $3 / 8 \times 6$	1072332	1072957	1200	. 28	. 38	. 53	1.15	. 36	. 81	3.88	5.28	5.75	1.47	1.58	. 31
$1 / 2 \times 6$	1072350	1072975	2200	. 56	. 50	. 64	1.36	42	1.00	4.19	6.51	7.07	1.81	1.87	. 37
$1 / 2 \times 9$	1072378	1072993	2200	. 63	. 50	. 64	1.36	. 42	1.00	5.69	8.01	8.57	1.81	1.87	. 37
$1 / 2 \times 12$	1072396	1073019	2200	. 72	. 50	. 64	1.36	. 42	1.00	7.19	9.51	10.07	1.81	1.87	. 37
$5 / 8 \times 6$	1072412	1073037	3500	1.05	. 63	. 79	1.75	. 55	1.31	4.31	7.12	7.91	2.36	2.44	. 50
$5 / 8 \times 9$	1072430	1073055	3500	1.18	. 63	. 79	1.75	. 55	1.31	5.81	8.62	9.41	2.36	2.44	. 50
$5 / 8 \times 12$	1072458	1073073	3500	1.31	. 63	. 79	1.75	. 55	1.31	7.31	10.12	10.91	2.36	2.44	. 50
$3 / 4 \times 6$	1072476	1073091	5200	1.65	. 75	. 97	2.09	. 69	1.63	4.56	7.86	8.84	2.81	2.56	. 63
$3 / 4 \times 9$	1072494	1073117	5200	1.84	. 75	. 97	2.09	. 69	1.63	6.06	9.36	10.34	2.81	2.56	. 63
$3 / 4 \times 12$	1072519	1073135	5200	2.03	. 75	. 97	2.09	. 69	1.63	7.56	10.86	11.84	2.81	2.56	. 63
$3 / 4 \times 18$	1072537	1073153	5200	2.41	. 75	. 97	2.09	. 69	1.63	10.56	13.86	14.84	2.81	2.56	. 63
$7 / 8 \times 12$	1072555	1073171	7200	2.88	. 88	1.16	2.56	. 81	1.88	7.81	11.70	12.81	3.25	3.09	. 75
$7 / 8 \times 18$	1072573	1073199	7200	3.25	. 88	1.16	2.56	. 81	1.88	10.81	14.70	15.81	3.25	3.09	. 75
1×6	1072591	1073215	10000	3.56	1.00	1.34	2.76	. 94	2.12	5.06	9.35	10.59	3.73	3.44	. 88
1×12	1072617	1073233	10000	4.22	1.00	1.34	2.76	. 94	2.12	8.06	12.35	13.59	3.73	3.44	. 88
1×18	1072635	1073251	10000	4.89	1.00	1.34	2.76	. 94	2.12	11.06	15.35	16.59	3.73	3.44	. 88
1×24	1072653	1073279	10000	5.56	1.00	1.34	2.76	. 94	2.12	14.06	18.35	19.59	3.73	3.44	. 88
1-1/4 $\times 12$	1072671	1073297	15200	8.10	1.25	1.84	3.72	1.19	2.63	8.38	14.25	15.79	4.92	4.53	1.13
$1-1 / 4 \times 18$	1072699	1073313	15200	9.14	1.25	1.84	3.72	1.19	2.63	11.38	17.25	18.79	4.92	4.53	1.13
$1-1 / 4 \times 24$	1072715	1073331	15200	10.2	1.25	1.84	3.72	1.19	2.63	14.38	20.25	21.79	4.92	4.53	1.13
1-1/2 12	1072733	1073359	21400	12.3	1.50	2.06	4.16	1.47	3.12	8.75	15.07	16.84	5.27	5.13	1.38
$1-1 / 2 \times 18$	1072751	1073377	21400	13.8	1.50	2.06	4.16	1.47	3.12	11.75	18.07	19.84	5.27	5.13	1.38
$1-1 / 2 \times 24$	1072779	1073395	21400	15.3	1.50	2.06	4.16	1.47	3.12	14.75	21.07	22.84	5.27	5.13	1.38
$1-3 / 4 \times 18$	1072813	1073439	28000	18.9	1.75	2.60	4.66	1.72	3.50	12.16	18.49	20.58	6.25	6.00	1.63
$1-3 / 4 \times 24$	1072831	1073457	28000	21.0	1.75	2.60	4.66	1.72	3.50	15.16	21.49	23.58	6.25	6.00	1.63
2×24	1072859	1073475	37000	35.3	2.00	2.62	5.61	2.09	4.19	15.59	23.82	26.36	7.28	6.88	2.00
2-1/2 $\times 24$	1072877	1073493	60000	55.8	2.50	3.06	5.84	2.38	5.62	17.20	25.61	29.09	9.04	7.50	2.25
$2-3 / 4 \times 24$	1072895	1073518	75000	72.4	2.75	3.69	6.57	2.88	6.12	17.35	26.75	30.75	9.56	8.38	2.75

[^24]
HG-2510 BODY

- Heat treat by normalizing.
- Hot Dip galvanized.
- UNC threads
- Fatigue Rated.
- Meets the performance requirements of Federal Specifications FF- -791b,Type 1, Form 1 - Class 2, except for those provisions required by the contractor.

min Penngme Proved
HG-2510 Body

Shank Dia. \&		Working Load	Weight	Dimensions (in)							
(in)	Stock No.	(lb)	(lb)	AA	BB	CC	DD	EE	GG	HH	JJ
* 5/16 x 4-1/2	1033919	800	. 22	5.59	4.58	. 51	. 82	. 38	. 56	. 44	. 19
* $3 / 8 \times 6$	1033937	1200	. 29	7.29	6.10	. 60	. 88	. 38	. 63	. 50	. 19
1/2 $\times 6$	1033955	2200	. 70	7.70	6.03	. 84	1.19	. 68	. 81	. 63	. 28
† 1/2 $\times 9$	1033973	2200	1.03	11.03	9.36	. 84	1.19	. 68	. 81	. 63	. 28
$\dagger 1 / 2 \times 12$	1033991	2200	1.27	14.03	12.36	. 84	1.19	. 68	. 81	. 63	. 28
$5 / 8 \times 6$	1034017	3500	1.11	8.02	6.03	1.00	1.43	. 83	1.00	. 75	. 34
$\dagger 5 / 8 \times 9$	1034035	3500	1.59	11.38	9.39	1.00	1.43	. 83	1.00	. 75	. 34
$\dagger 5 / 8 \times 12$	1034053	3500	1.96	14.38	12.39	1.00	1.43	. 83	1.00	. 75	. 34
$3 / 4 \times 6$	1034071	5200	1.50	8.26	6.13	1.07	1.74	. 94	1.13	. 94	. 40
† $3 / 4 \times 9$	1034099	5200	2.17	11.72	9.59	1.07	1.74	. 94	1.13	. 94	. 40
$\dagger 3 / 4 \times 12$	1034115	5200	2.66	14.72	12.59	1.07	1.74	. 94	1.13	. 94	. 40
$\dagger 3 / 4 \times 18$	1034133	5200	3.63	20.66	18.53	1.07	1.74	. 94	1.13	. 94	. 40
$7 / 8 \times 12$	1034179	7200	3.61	14.62	12.16	1.23	2.00	1.13	1.31	1.06	. 47
$\dagger 7 / 8 \times 18$	1034197	7200	5.27	21.09	18.63	1.23	2.00	1.13	1.31	1.06	. 47
1×6	1034213	10000	3.32	9.00	6.18	1.41	2.45	1.25	1.50	1.25	. 60
1×12	1034231	10000	5.34	15.00	12.18	1.41	2.45	1.25	1.50	1.25	. 60
$\dagger 1 \times 18$	1034259	10000	7.35	21.00	18.18	1.41	2.45	1.25	1.50	1.25	. 60
$\dagger 1 \times 24$	1034277	10000	9.85	27.66	24.84	1.41	2.45	1.25	1.50	1.25	. 60
$1-1 / 4 \times 12$	1034339	15200	5.72	15.40	12.06	1.67	2.62	1.25	1.88	1.50	. 56
$1-1 / 4 \times 18$	1034357	15200	7.58	21.40	18.06	1.67	2.62	1.25	1.88	1.50	. 56
$\dagger 1-1 / 4 \times 24$	1034375	15200	9.45	27.96	24.62	1.67	2.62	1.25	1.88	1.50	. 56
1-1/2 $\times 12$	1034437	21400	8.01	15.82	12.32	1.75	2.99	1.50	2.25	1.75	. 62
1-1/2 18	1034455	21400	10.4	21.82	18.32	1.75	2.99	1.50	2.25	1.75	. 62
† 1-1/2 $\times 24$	1034473	21400	12.9	28.45	24.94	1.75	2.99	1.50	2.25	1.75	. 62
$1-3 / 4 \times 18$	1034552	28000	15.7	22.44	18.37	2.04	3.62	1.75	2.62	2.12	. 75
$1-3 / 4 \times 24$	1034570	28000	19.2	28.44	24.37	2.04	3.62	1.75	2.62	2.12	. 75
2×24	1034632	37000	25.8	29.13	24.48	2.33	4.14	2.00	3.00	2.38	. 88
2-1/2 x 24	1034678	60000	55.9	31.66	24.60	3.53	5.62	2.75	3.88	3.12	1.25
$2-3 / 4 \times 24$	1034696	75000	54.0	31.66	24.65	3.51	5.62	2.75	3.88	4.48	1.25

* Mechanical Galvanized
\dagger Contains Center Rib for additional body support.

Stub End Turnbuckles

- End fittings are Quenched and Tempered or Normalized, bodies heat treated by normalizing.
- Complete assembly is self-colored.
- Reference American Welding Society Specifications for proper welding procedures
- Meets the performance requirements of Federal Specifications FF--791b, Type 1 Form 1 - CLASS 3, and ASTM F-1145, except for those provisions required of the contractor.

HS - 251
Stub End Turnbuckles

HS-251 Stub End Turnbuckles

Thread Diameter (in)	HS-251 Stock No.	Working Load Limit (lb)	Weight Each (lb)	Dimensions (in)					
				A	R	S	T	U	W
$3 / 8 \times 6$	1033143	1200	. 75	. 38	6.00	7.13	. 56	4.44	16.00
$1 / 2 \times 6$	1033161	2200	1.25	. 50	6.00	7.50	. 75	4.25	16.00
$5 / 8 \times 6$	1033223	3500	2.11	. 63	6.00	7.88	. 94	4.06	16.00
$3 / 4 \times 6$	1033287	5200	3.27	. 75	6.00	8.25	1.13	4.38	17.00
$7 / 8 \times 6$	1033367	7200	4.78	. 88	6.00	8.63	1.31	4.69	18.00
1×6	1033429	10000	6.36	1.00	6.00	9.00	1.50	5.00	19.00
1×12	1033447	10000	8.80	1.00	12.00	15.00	1.50	5.00	25.00
$1-1 / 8 \times 6$	1033508	12400	8.88	1.13	6.00	9.13	1.56	4.94	19.00
$1-1 / 4 \times 6$	1033526	15200	10.18	1.25	6.00	9.13	1.56	5.44	20.00
1-1/4 $\times 12$	1033544	15200	13.60	1.25	12.00	15.12	1.56	5.44	26.00
1-1/2 $\times 12$	1033642	21400	20.44	1.50	12.00	15.75	1.88	5.38	26.50

HG -4060/
HG -4061
Lock Nuts

HG-4060 / HG-4061 Lock Nuts

Shank Dia. \& Take Up (in)	Right Hand HG-4060 Stock No.	Left Hand HG-4061 Stock No.	Weight Per 100 (lb)	Dimensions (in)		
				0	P	Q
1/4	1075115	1075491	. 80	44	. 50	. 16
5/16	1075133	1075516	1.30	. 50	. 56	. 19
3/8	1075151	1075534	2.00	. 56	. 64	. 22
1/2	1075197	1075570	4.00	. 75	. 86	. 31
5/8	1075213	1075598	7.00	. 94	1.06	. 38
3/4	1075231	1075614	11.00	1.13	1.26	. 42
7/8	1075259	1075632	16.30	1.31	1.50	. 48
1	1075277	1075650	23.80	1.50	1.69	. 55
1-1/8	1075295	1075678	32.00	1.50	1.69	. 55
1-1/4	1075311	1075696	62.50	1.88	2.13	. 72
1-1/2	1075357	1075730	72.00	2.25	2.53	. 84
1-3/4	1075393	1075776	112.00	2.75	3.18	1.00
2	1075419	1075794	150.00	3.12	3.61	1.12
2-1/2	1075455	1075838	330.00	3.88	4.47	1.50
2-3/4	1075473	1075856	425.00	4.25	4.91	1.62

Grosluy. Wire Rope Lubricant

Vitalife ${ }^{\circledR}$ products are the preferred wire rope lubricants in the industry because of their ability to penetrate into wire rope and displace water and contaminants, thus reducing wear and corrosion throughout the rope.

- Available in a variety of container sizes.
- Provides inner strand preservation and lubricity.
- Allows for easy visual inspection of the ropes.
- Reduces the friction between the strands of the wire rope, thus extending rope life.
- Adheres to surface of strands, forming an outer film which provides excellent corrosive protection
- Non-tacky (will not attract dust)
- Vitalife ${ }^{\circledR}$ in aerosol form is a regulated dangerous good. See MSDS sheet for shipping instructions.
- Vitalife ${ }^{\circledR}$ Bio-Lube has been developed especially for environmentally friendly applications.
- Vitalife ${ }^{\circledR} 500$ has been developed exclusively for ski lifts and tramways.

Vitalife ${ }^{\circledR}$ Type	Container Size	Vitalife ${ }^{\text {® }}$ Stock No.	Weight Each (kg)
Vitalife ${ }^{\circledR} 400$ (Standard)	12 Ounce	1038946	1.00
	5 Gallon	1038955	41.0
	55 Gallon	1038964	420
Vitalife ${ }^{\circledR} 410$ BIO-LUBE (Environmentally Friendly)	12 Ounce	1039004	1.00
	5 Gallon	1039013	41.0
	55 Gallon	1039022	420
Vitalife ${ }^{\ominus} 500$ (Ski Lifts and Tramways)	5 Gallon	1038973	41.0
	55 Gallon	1038982	420

VSP Vitalife ${ }^{\circledR}$ Spray Applicators

- Designed and manufactured to work in the rugged field conditions of the construction industry.

Description	VSP Stock No.	Weight Each (lb)
4 Gallon Backpack Sprayer	1039092	11.8

- All applicator seals are specially designed to work with Vitalife ${ }^{\circledR} 400$ and BIO-LUBE products.

WARNINGS \& APPLICATION INSTRUCTIONS

Important Safety Information -

 Read \& Follow
Inspection/Maintenance Safety:

- Always inspect eye bolt before use.
- Never use eye bolt that shows signs of wear or damage.
- Never use eye bolt if eye or shank is bent or elongated.
- Always be sure threads on shank and receiving holes are clean.
- Never machine, grind, or cut eye bolt.
- Do not leave threaded end of macinery eye bolt in aluminum loads for long periods of time as it may cause corrosion.

Assembly Safety:

- Never exceed load limits specified in Table I \& Table 2.
- Never use regular nut eye bolts for angular lifts.
- Always use shoulder nut eye bolts (or machinery eye bolts) for angular lifts.
- For angular lifts, adjust working load as follows:

ANGLE FROM "IN-LINE"	ADJUSTED WORKING LOAD LIMIT
5 degrees	100% of rated working load
15 degrees	80% of rated working load
30 degrees	65% of rated working load
45 degrees	30% of rated working load
90 degrees	25% of rated working load

- Never undercut eye bolt to seat shoulder against the load.
- Always countersink receiving hole or use washers with sufficient I.D. to seat shoulder.
- Always screw eye bolt down completely for proper seating.
- Always tighten nuts securely against the load.

Table 1 (In-Line Load)	
Size (in)	Working Load Limit (Ib)
$1 / 4$	650
$5 / 16$	1,200
$3 / 8$	1,550
$1 / 2$	2,600
$5 / 8$	5,200
$3 / 4$	7,200
$7 / 8$	10,600
1	13,300
$1-1 / 8$	15,000
$1-1 / 4$	21,000
$1-1 / 2$	24,000
$1-3 / 4$	34,000
2	42,000
$2-1 / 2$	65,000

A WARNING

- Load may slip or fall if proper eye bolt assembly and lifting procedures are not used.
- A falling load can seriously injure or kill.
- Read and understand these instructions, and follow all eye bolt safety information presented here.
- Read, understand, and follow information in diagrams and charts below before using eye bolt assemblies.

Shoulder Nut Eye Bolt Installation for Angular Loading

 exceed this distance between the bottom of the load and the last thread of the eye bolt.

Place washers or spacers between nut and load so that when the nut is tightened securely, the shoulder is secured flush against the load surface.

Figure 1

Table 2 (In-Line Load)	
Metric Size	Working Load Limit - kg
m 6	200
m 8	400
m 10	640
m 12	1000
m 16	1800
m 20	2500
m 24	4000
m 27	5000
m 30	6000
m 36	8500
m 42	14000
m 48	17300
m 64	29500

Important - Read and understand these instructions before using eye bolts.
 Regular Nut \& Shoulder Nut Eye Bolt - Installation for In-Line Loading

One eye bolt diameter or less

Operating Safety

- Always stand clear of load.
- Always lift load with steady, even pull - do not jerk.
- Always apply load to eye bolt in the plane of the eye - not at an angle.

- Never exceed the capacity of the eye bolt-see Table $1 \& 2$.
- When using lifting slings of two or more legs, make sure the loads in the legs are calculated using the angle from the vertical sling angle to the leg and properly size the shoulder nut or machinery eye bolt for the angular load.

Machinery Eye Bolt - Installation for In-Line \& Angular Loading
These eye bolts are primarily intended to be installed into tapped holes.

1. After the loads on the eye bolts have been calculated, select the proper size eye bolt for the job.

For angular lifts, adjust working load as follows:

Direction of Pull (from In-Line)	Adjusted Working Load
45 degrees	30% of rated working load
90 degrees	25% of rated working load

2. Drill and tap the load to the correct sizes to a minimum depth of one-half the eye bolt size beyond the shank length of the machinery eye bolt.
3. Thread the eye bolt into the load until the shoulder is flush and securely tightened against the load.
4. If the plane of the machinery eye bolt is not aligned with the sling line, estimate the amount of unthreading rotation necessary to align the plane of the eye properly.
5. Remove the machinery eye bolt from the load and add shims (washers) of proper thickness to adjust the angle of the plane of the eye to match the sling line. Use Table 3 to estimate the required shim thickness for the amount of unthreading rotation required.

Table 3			
Eye Bolt Size (in)	Shim Thickness Required to Change Rotation 90 (in)	Eye Bolt Size (mm)	Shim Thickness Required to change Rotation 90° (mm)
$1 / 4$.0125	M 6	.25
$5 / 16$.0139	M 8	.31
$3 / 8$.0156	M 10	.38
$1 / 2$.0192	M 12	.44
$5 / 8$.0227	M 16	.50
$3 / 4$.0250	M 20	.62
$7 / 8$.0278	M 24	.75
1	.0312	M 27	.75
$1-1 / 8$.0357	M 30	.88
$1-1 / 4$.0357	M 36	1.00
$1-1 / 2$.0417	M 42	1.13
$1-3 / 4$.0500	M 48	1.25
2	.0556	M 64	1.50
$2-1 / 2$.0625	-	-

[^25]

HR-100

Pivot Hoist Ring

Application / Assembly Instructions

- Use pivot hoist ring only with ferrous metal (steel, iron) workpiece. Do not leave threaded end of hoist ring in aluminium for long periods of time due to corrosion.
- After determining the loads on each pivot hoist ring, select the proper size using the Working Load Limit (WLL) ratings in Table 1 for UNC threads.
- Drill and tap the workpiece to the correct size to a minimum depth of one-half the threaded bolt diameter plus the effective thread projection length (see Table 1, on next page). To select proper bolt and thread sizes see Table 1 on next page.
- Install the pivot hoist ring to recommended torque with a torque wrench making sure the pivot hoist ring body meets the load (workpiece) surface. See rated load limit and bolt torque requirements imprinted on top of the pivot hoist ring body (see Table 1, on next page).
- Never use spacers between the pivot hoist ring body and workpiece surface.
- Always select proper load rated lifting device for use with pivot hoist ring.
- Attach lifting device ensuring free fit to pivot hoist ring bail (lifting ring) (Figure 1).
- Apply partial load and check proper pivot. Ensure load alignment is in the direction of pivot (Figure 4). There should be no interference between load (workpiece) and pivot hoist ring bail (Figure 2).

Figure 1

Figure 2

Figure 3

Figure 4

Operating Safety

- Never exceed the capacity (WLL) of the pivot hoist ring, See Table 1 for UNC threads.
- When using lifting slings of two or more legs, make sure the forces in the legs are calculated using the angle from the horizontal sling angle to the leg and select the proper size pivot hoist ring. When using a multi-leg lifting sling, the pivot hoist ring must be mounted so that the pivot direction is inline with the load applied.

Table 1 HR-100 Pivot Hoist Rings**				
			Dimensions (in)	
Working Load Limit* (lb)	$\begin{gathered} \text { Torque } \\ \text { in } \\ \text { (ft•lbf) } \dagger \end{gathered}$	No. of Bolts	Bolt Size† \dagger	Effective Thread Projection Length
2,000	7	2	5/16-18	0.82
2,500	12	2	3/8-16	0.65
5,000	28	2	1/2-13	1.40
12,000	28	4	1/2-13	1.65
20,000	60	4	5/8-11	1.65

* Ultimate load is 5 times the working load limit. Individually proof tested to 2-1/2 times the working load limit.
\dagger Tightening torque values shown are based upon threads being clean, dry and free of lubrication.
** Designed to be used with ferrous workpiece only.
$\dagger \dagger$ Only use Crosby high strength replacement bolts. Do not use any other bolts.

After slings have been properly attached to the hoist ring, apply force slowly. Watch the load and be prepared to stop applying force if the load starts buckling.

Do not reeve slings from one bail to from one bail to
another. This will another. This will
alter the load and angle of loading on the hoist ring.

Buckling may occur if the load is not stiff enough to resist the compressive forces which result from the angular loading.

WRONG

Trench Cover Hoist Ring Application / Assembly Instructions

- Use trench cover hoist ring only with ferrous metal (steel, iron) workpiece.
- After determining the loads on each trench cover hoist ring, select the proper size using the Working Load Limit (WLL) ratings in Table 1 (see next page). For proper nut selection, reference trench cover nut welding guidelines (see next page). Nut thickness must equal workpiece thickness.
- For proper welding of nut, reference Nut Welding Guidelines on the following page.
- Always make sure the nut is free of dirt or contaminants before installation of the Trench Cover Hoist Ring. A clean out tool is available from Crosby.
- To install, spin base down flush with workpiece surface and tap one of the lugs on the base with a hammer to tighten; repeat procedure before each use.
- Never use spacers between the trench cover hoist ring base and workpiece surface.
- Always select proper load rated lifting device for use with trench cover hoist ring.
- Attach lifting device ensuring free fit to trench cover hoist ring bail (lifting ring) (Figure 1).
- Apply partial load and check proper rotation and alignment. There should be no interference between load (workpiece) and trench cover hoist ring bail (Figure 2).
- Always ensure free movement of bail. The bail should pivot 180 degrees and swivel 360 degrees (Figure 4).

A. WARNING

- Load may slip or fall if proper Trench Cover Hoist and lifting procedures are not used.
- A falling load can seriously injure or death.
- Do not use with damaged slings or chain. For inspection criteria see ASME B30.9.
- Never apply load except in line with the pivot direction.
- Use only genuine Crosby parts as replacements.
- Read and understand these warnings and application instructions.

Trench Cover Hoist Ring Inspection / Maintenance

- Always inspect trench cover hoist ring parts before use (Figure 3). Be sure threads on shank and receiving hole are clean, not damaged or worn, and fit properly. A thread gauge is available from Crosby.
- Never use trench cover hoist ring that shows signs of corrosion, wear or damage.
- Never use trench cover hoist ring if bail is bent or elongated.
- Do not use parts showing cracks, nicks or gouges. Always make sure there are no spacers (washers) used between trench cover hoist ring body and the workpiece surface. Remove any spacers (washers) and retighten before use.
- Always be sure total workpiece surface is in contact with the trench cover hoist ring body mating surface.
- Drilled and tapped hole in the weld-in nut must be 90 degrees to load (workpiece) surface. A welding fixture is available from Crosby.
- A visual periodic inspection of the nut to workpiece weld should be performed. Check the weld visually, or use a suitable NDE (Non-Destructive Examination) method if required.

Figure3

Figure 4

Copyright © 2019 The Crosby Group LLC All Rights Reserved

Figure 2

Operating Safety

- Never exceed the capacity (WLL) of the trench cover hoist ring, see Table 1.
- When using lifting slings of two or more legs, make sure the forces in the legs are calculated using the angle from the horizontal sling angle to the leg and select the proper size trench cover hoist ring.

Table 1 HR-500 Trench Cover Hoist Rings**			
	Dimensions (in)		
Working Load Limit (lb)*	Coil Thread Size A	Effective Thread Projection Length B	Weight Each (Ib)
5,000	1 1"-3.5	1.000	8.0
10,000	$1-1 / 4^{\prime \prime}-3.5$	1.000	16.0
15,000	$1-1 / 2^{\prime \prime}-3.5$	1.000	28.0

* Ultimate load is 5 times the working load limit. Individually proof tested to 2-1/2 times the working load limit
** Designed to be used with ferrous workpiece only.

Trench Cover Nut Welding Guidelines

1. Select the correct size trench cover hoist ring to be used. Be sure to calculate the maximum load that will be applied to the trench cover hoist ring. The nut thickness should be equal to the workpiece thickness.
2. Cut a hole in the workpiece per Table 2 below.
3. Insert the trench cover nut into the hole. The trench cover nut should have $1 / 16$ " clearance around its outer edge. The surface of the trench cover nut must be parallel and even with the surface of the workpiece (See Figure 5).
4. A welding fixture is available from Crosby for this.
5. Welding is to be performed by a qualified welder using a qualified procedure in accordance with American Welding Society and/or American Society of Mechanical Engineers requirements.

Table 2 HR-500 Weld-In Nuts				
	Dimensions (in)			
Working Load Limit (lb)	Coil Thread Size	Nut Diameter K	Trench Cover Hole Diameter L	Nut Thickness = Workpiece Thickness M
5,000	1"-3.5	3	3-1/8	3/4
5,000	1"-3.5	3	3-1/8	7/8
5,000	1"-3.5	3	3-1/8	1
10,000	1-1/4" - 3.5	3	3-1/8	3/4
10,000	1-1/4" - 3.5	3	3-1/8	7/8
10,000	1-1/4" - 3.5	3	3-1/8	1
10,000	1-1/4" - 3.5	3	3-1/8	1-1/4
10,000	1-1/4" - 3.5	3	3-1/8	1-1/2
15,000	1-1/2" - 3.5	3-1/2	3-5/8	1
15,000	1-1/2" - 3.5	3-1/2	3-5/8	1-1/4
15,000	1-1/2" -3.5	3-1/2	3-5/8	1-1/2

6. When welding to low or medium carbon cover steel, the following suggestions should be included in the qualified procedure.
A. Before welding, all weld surfaces must be clean and free from rust, grease, paint, slag and any other contaminants.
B. Weld material is to have a minimum tensile strength of $70,000 \mathrm{PSI}$ (such as AWS A5. 1E-7018). Observe the electrode manufacturer's recommendations.
C. Completely fill internal bevel created between trench cover nut and the workpiece.
D. Do not rapidly cool the weld.
E. The surface of the weld must be ground sufficiently so that the trench cover hoist ring will fit flush against the workpiece.
F. Using the same procedure, weld the opposite side.
G. A thorough inspection of the weld should be performed. No cracks, pitting, inclusions, notches or undercuts are allowed. If doubt exists, use a suitable NDE method, such as magnetic particle or liquid penetrant to verify.
H. If repair is required, grind out the defect and re-weld using the original qualified procedure.

NOTE: For welding to other grades of steel, a qualified weld procedure must be developed.

Figure 5

WARNINGS \& APPLICATION INSTRUCTIONS

HR-1200

Hoist Ring Application / Assembly Instruction

The Crosby side pull swivel hoist ring is designed to accept standard Crosby fittings to facilitate wider slings and quick attachment. In order to use the larger fittings, the load rating on the (shackle) fitting may be greater than the hoist ring frame. Never exceed the Working Load Limit of the hoist ring frame.

- Use swivel hoist ring only with a ferrous metal (steel, iron) or nonferrous (i.e., aluminum) loads (workpiece). Do not leave threaded end of hoist ring in aluminum loads for long time periods due to corrosion.
- After determining the loads on each hoist ring, select the proper size hoist ring using the Working Load Limit ratings in Table 1 for UNC threads and Table 2 for Metric threads (on next page.)
- For Subsea or Metric environment application, use the HR-1200 CT Series hoist ring only.
- Drill and tap the workpiece to the correct size to a minimum depth of one-half the threaded shank diameter plus the threaded shank length.
- Install hoist ring to recommended torque with a torque wrench making sure the bushing flange is fully supported by the load (workpiece) surface. See rated load limit and bolt torque requirements imprinted on hoist ring body (See Table 1 or Table 2).
- Never use spacers between bushing flange and mounting surface.
- Always select proper lifting device for use with Swivel Hoist Ring (See Tables $1 \& 2$ on next page).
- Attach lifting device ensuring free fit to hoist shackle (See Figure 3).
- Apply partial load and check proper rotation and alignment of shackle. There should be no interference between load (workpiece) and hoist shackle (See Figure 1 and Figure 3).
- The Hoist ring should rotate into normal operating position, with shackle aligned with load as shown in Figure 3. If shackle is oriented as shown in Figure 4, DO NOT LIFT.
- Special Note: when a Hoist Ring is installed with a retention nut, the nut must have full thread engagement and must meet one of the following standards to develop the Working Load Limit (WLL).

1. ASTM A-563 (A) Grade D Hex Thick
2. (B) Grade DH Standard Hex
3. SAE Grade 8 - Standard Hex

Hoist Ring Inspection / Maintenance

- Always inspect hoist ring before use.
- Regularly inspect hoist ring parts (Figure 2).
- For hoist rings used in frequent load cycles or on pulsating loads, the bolt threads should be periodically inspected by magnetic particle or dye penetrant.
- Do not use part showing cracks, nicks or gouges.
- Repair minor nicks or gouges to hoist frame by lightly grinding until surfaces are smooth. Do not reduce original dimension more than 10%. Do not repair by welding.
- Loads may slip or fall if proper Hoist Ring assembly and lifting procedures are not followed.
- A falling load may cause serious injury or death.
- Install hoist ring bolt to torque requirements listed in tables.
- The side pull hoist ring frame will be only one part of a lifting system with several components (i.e., shackles and slings). Never exceed the Working Load Limit of the hoist ring frame.
- Do not use damaged slings or chain. For inspection criteria, see ASME B30.9.
- Read and understand these instructions before using hoist ring.
- Use only genuine Crosby parts as replacements.

Figure 1

Figure 3

Figure 2

- Never use hoist ring that shows signs of corrosion, wear or damage.
- Never use hoist ring if components are bent or elongated.
- Always be sure threads on bolt and receiving tapped holes are clean, undamaged, and fit properly.
- Always check with torque wrench before using an already installed hoist ring.
- Always make sure there are no spacers (washers) used between bushing flange and the mounting surface. Remove any spacers (washers) and retorque before use.
- Always ensure free movement of shackle. The shackle should pivot 90° and the hoist ring should swivel 360° (See Figure 3).
- Always be sure total workpiece surface is in contact with hoist ring bushing mating surface. Drilled and tapped hole must be 90° to load (workpiece) surface.

OPERATING SAFETY

- Never exceed the capacity of the hoist ring, see Table 1 for UNC threads and Table 2 for Metric threads.
- When using lifting slings of two or more legs, make sure the forces in the legs are calculated using the angle from the horizontal sling angle to the leg and select the proper size swivel hoist ring to allow for the angular forces.

HR1200 Threads

Frame Size	Working Load Limit * (lb)	Hoist Ring Bolt Torque in (ft•lbf) \dagger	Bolt Size \ddagger (in)	Effective Thread Projection Length (in)	Recommended Shackles	
					Red Pin ${ }^{\ominus}$ Shackles $209,210,213$ $215,2130,2150$	$\begin{gathered} \text { Red Pin }{ }^{\circledR} \\ \text { Web Shackles } \\ \text { S-281 } \end{gathered}$
1	$\begin{aligned} & \text { 650t+ } \\ & 800+1 \end{aligned}$	$\begin{gathered} 7 \\ 12 \\ \hline \end{gathered}$	$\begin{aligned} & 5 / 16-18 \times 1.5 \\ & 3 / 8-18 \times 1.5 \\ & \hline \end{aligned}$	$\begin{array}{r} .59 \\ .59 \end{array}$	$\begin{gathered} 1 / 2^{\prime \prime}-(2) \\ 5 / 8^{\prime \prime}-(3-1 / 4) \end{gathered}$	$2 "$ - (3-1/4)
2	$\begin{gathered} 2000 \\ 2000 \dagger \dagger \\ 3000 \\ 3000+\dagger \end{gathered}$	$\begin{aligned} & 28 \\ & 28 \\ & 60 \\ & 60 \\ & \hline \end{aligned}$	$\begin{array}{r} 1 / 2-13 \times 2.0 \\ 1 / 2-13 \times 2.5 \\ 5 / 8-11 \times 2.0 \\ 5 / 8-11 \times 2.75 \\ \hline \end{array}$	$\begin{array}{r} .71 \\ 1.21 \\ .71 \\ 1.46 \\ \hline \end{array}$	$\begin{aligned} & 5 / 8 "-(3-1 / 4) \\ & 3 / 4 "-(4-3 / 4) \end{aligned}$	$\begin{gathered} 2 "-(3-1 / 4) \\ 1-1 / 2 "-(4-1 / 2) \end{gathered}$
3	$\begin{gathered} 5000 \\ 5000 \dagger \dagger \\ 6500 \\ 6500 \dagger \dagger \\ 8000 \\ 8000 \dagger \dagger \\ \hline \end{gathered}$	$\begin{aligned} & 100 \\ & 100 \\ & 160 \\ & 160 \\ & 230 \\ & 230 \\ & \hline \end{aligned}$	$\begin{gathered} 3 / 4-10 \times 2.75 \\ 3 / 4-10 \times 3.5 \\ 7 / 8-9 \times 2.5 \\ 7 / 8-9 \times 3.5 \\ 1-8 \times 3.0 \\ 1-8 \times 4.0 \\ \hline \end{gathered}$	$\begin{array}{r} 1.46 \\ 1.63 \\ .90 \\ 1.68 \\ 1.15 \\ 2.15 \\ \hline \end{array}$	7/8" - (6-1/2)	2" - (6-1/4)
4	14000	470	1-1/4-7x 4.5	2.22	$\begin{gathered} 1 "-(8-1 / 2) \\ 1-1 / 8 "-(9-1 / 2) \\ 1-1 / 4 "-(12) \\ \hline \end{gathered}$	3" - (8-1/2)
5	$\begin{aligned} & 17200 \\ & 29000 \\ & \hline \end{aligned}$	$\begin{gathered} 800 \\ 1100 \end{gathered}$	$\begin{array}{r} 1-1 / 2-6 \times 6.5 \\ 2-4-1 / 2 \times 6.5 \end{array}$	$\begin{array}{r} 2.88 \\ 2.98 \\ \hline \end{array}$	$\begin{gathered} 1-3 / 8 "-(13-1 / 2) \\ 1-1 / 2^{\prime \prime}-(17) \\ 1-3 / 4 "-(25) \\ \hline \end{gathered}$	-

HR1200M UNC Metric Threads
TABLE 2

Frame Size	Working Load Limit * (kg)	Hoist Ring Bolt Torque in $\mathrm{Nm} \dagger$	Bolt Size \ddagger (mm)	Effective Thread Projection Length (mm)	Recommended Shackles	
					$\begin{gathered} \text { Red Pin }{ }^{\ominus} \text { Shackles } \\ 209,210,213 \\ 215,2130,2150 \end{gathered}$	Red Pin ${ }^{\text {® }}$ Web Shackles S-281
1	$\begin{array}{r} 300 \\ 400 \\ \hline \end{array}$	$\begin{aligned} & 10 \\ & 16 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { M8 } \times 1.25 \times 40 \\ & \text { M10 } \times 1.5 \times 40 \\ & \hline \end{aligned}$	$\begin{array}{r} 16.9 \\ 16.9 \\ \hline \end{array}$	$\begin{gathered} 1 / 2 "-(2) \\ 5 / 8^{\prime \prime}-(3-1 / 4) \\ \hline \end{gathered}$	2" - (3-1/4)
2	$\begin{array}{r} 1000 \\ 1400 \\ \hline \end{array}$	$\begin{aligned} & 38 \\ & 81 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { M12 } \times 1.75 \times 50 \\ & \text { M16 } \times 2.00 \times 60 \\ & \hline \end{aligned}$	$\begin{aligned} & 17.2 \\ & 27.2 \end{aligned}$	$\begin{aligned} & 5 / 8 "-(3-1 / 4) \\ & 3 / 4 "-(4-3 / 4) \\ & \hline \end{aligned}$	$\begin{gathered} 2^{\prime \prime}-(3-1 / 4) \\ 1-1 / 2 "-(4-1 / 2) \\ \hline \end{gathered}$
3	$\begin{aligned} & 2250 \\ & 3500 \end{aligned}$	$\begin{aligned} & 136 \\ & 312 \end{aligned}$	$\begin{aligned} & \text { M20 } \times 2.50 \times 75 \\ & \text { M24 } 3.00 \times 80 \end{aligned}$	$\begin{aligned} & 28.1 \\ & 33.1 \end{aligned}$	7/8" - (6-1/2)	$2 "$ - (6-1/4)
4	6250	637	M30 $\times 3.5 \times 120$	65.1	$\begin{gathered} 1 "-(8-1 / 2) \\ 1-1 / 8 "-(9-1 / 2) \\ 1-1 / 4 "-(12) \end{gathered}$	$3 "$ - (8-1/2)
5	7750 10000 13000	$\begin{aligned} & 1005 \\ & 1005 \\ & 1350 \end{aligned}$	M36 $\times 4.0 \times 150$ M $42 \times 4.5 \times 160$ M $48 \times 5.0 \times 160$	$\begin{aligned} & 60.6 \\ & 70.6 \\ & 70.6 \end{aligned}$	$\begin{gathered} 1-3 / 8 "-(13-1 / 2) \\ 1-1 / 2^{\prime \prime}-(17) \\ 1-3 / 4 "-(25) \end{gathered}$	-

[^26]CROSBY ${ }^{\text {® }}$ WELD-ON PIVOTING LINK WARNING \& APPLICATION INSTRUCTIONS

S-265

- Loads may disengage from link if proper welding, assembly, and lifting procedures are not used.
- A falling load may cause serious injury or death.
- Do not use with damaged slings or chain. For sling inspection criteria see ASME B30.9.
- Read and understand these instructions before welding on, or using the pivoting link.

Important Safety Information Read and Follow

- Use weld-on pivoting link only with ferrous metal (steel) workpiece.
- After determining the loads on each weld-on pivoting link, select the proper size using the Working Load Limit (WLL) ratings in Table 1 on next page.
- Always make sure the weld-on pivoting link and mounting surface is free of dirt or contaminants before installation.
- Never use spacers between the weld-on pivot link and mounting surface.
- Always select proper load rated lifting device for use with weld-on pivoting link.
- Attach lifting device ensuring free movement of weld-on pivoting link bail (Figure 1).
- Apply partial load and check proper alignment. There should be no interference between load (workpiece) and weld-on pivoting link (Figure 2).
- Always ensure free movement of bail. The bail should pivot 180 degrees (Figure 4).
- The support structure that the pivot link is attached to must be of suitable size, composition and quality to support the anticipated loads of all operating positions. The required support structure thickness for a given application is dependent on variables such as unsupported length and material strength, and should be determined by a qualified individual.
- Never repair, alter, rework or reshape the pivoting link bail by welding, heating, burning or bending.

Weld-on Pivoting Link Inspection / Maintenance

- Always inspect weld-on pivoting link before use.
- Regularly inspect weld-on pivoting link parts (Figure 3).
- Never use weld-on pivoting link that shows signs of corrosion, wear or damage.
- Never use weld-on pivoting link if bail is bent or elongated.
- Do not use part showing cracks, nicks or gouges.
- Always make sure there are no spacers used between weld-on pivoting link and the mounting surface.
- Always be sure workpiece surface is in total contact with the weld-on pivoting link base mating surface.
- Always inspect the weld-on pivoting link bail and base for wear.
- A visual periodic inspection of the weld should be performed. Check the weld visually, or use a suitable NDE method if required.

Operating Safety

- Never exceed the capacity (WLL) of the weld-on pivoting link (Table 1, next page).
- Always apply load within 90° of inline, at any pivot angle (Figure 4 \& 5).
-When using lifting slings of two or more legs, make sure the forces in the legs are calculated using the angle from the horizontal sling angle to the leg and select the proper size link.

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Weld-on Pivoting Link Welding Guidelines

1. Select the correct size weld-on pivoting link to be used. Be sure to calculate the maximum load that will be applied to the weld-on pivoting link.
2. Place the weld-on pivoting link onto the mounting surface. The bottom of the link base must be parallel and even with the mounting surface.
3. Welding is to be performed by a qualified welder using a qualified procedure in accordance with American Welding Society and/or American Society of Mechanical Engineers requirements. Always follow your country or local mandatory regulations or codes.
4. The following welding recommendations should be included in the qualified procedure for welding to low or medium carbon plate steel. For welding to other grades of steel, a qualified weld procedure must be developed.
A. Saddle material is equivalent to SAE/AISI 1024, EN S355J2, or DIN 1.0570.
B. Weld material is to have a minimum tensile strength of 70,000 PSI (such as AWS A5.1 E-7018). Observe the electrode manufacturer's recommendations. Completely fill internal fillet created between weld-on pivoting link base and mounting surface.
C. Before welding, all weld surfaces must be clean and free from rust, grease, paint, slag and any other contaminants.
D. Fillet weld leg size should be minimum shown in Table 1. Weld profiles to be in accordance with AWS. Weld size is measured by length of leg.
E. Welding should be carried out in a minimum of two passes to ensure adequate root penetration at the base of the pivoting link.
F. Weld full length of "D" dimension on both sides of link base (Figure 5).
G. Do not weld close to the bail. After welding, ensure bail pivots full 180° without interfering with the weld.
H. Do not rapidly cool the weld.
I. The ends of the weld must be ground sufficiently so that the weld-on pivoting link will fit flush against the mounting surface.
J. A thorough inspection of the weld should be performed. No cracks, pitting, inclusions, notches or undercuts are allowed. If doubt exists, use a suitable NDE method, such as magnetic particle or liquid penetrant to verify.
K. If repair is required, grind out the defect and re-weld using the original qualified procedure.

Figure 5

Table 1 S-265 Weld-on Pivoting Links*											
	Working Load Limit (t)		Dimensions (in)								Weight Each (lb)
Stock Number	Design Factor 5:1	Design Factor 4:1	A	B	C	D	F	G	H	Minimum Fillet Weld Size	
1290740	1	1.2	1.57	1.42	3.27	1.38	0.51	2.60	1.65	3/32	. 88
1290768	2.5	3.2	1.77	1.73	3.90	1.65	0.71	3.19	1.89	3/32	1.32
1290786	4	5	2.17	1.97	4.84	1.93	0.87	3.90	2.24	1/4	2.65
1290802	6.4	8	2.76	2.52	5.67	2.52	1.02	4.80	2.64	1/4	5.29
1290820	12	15	3.82	3.54	7.60	3.39	1.34	6.50	3.70	5/16	13.01

[^27]

Hoist Ring Application Assembly Safety

Use swivel hoist ring only with a ferrous metal (steel, iron) or soft metal (i.e., aluminum) load (workpiece). Do not leave threaded end of hoist ring in aluminum loads for long time periods due to corrosion.
For subsea or marine environment applications, use the HR-1000CT series Hoist Ring only.

- After determining the loads on each hoist ring, select the proper size hoist ring using the Working Load Limit ratings in Tables 1, 2, and 5 for UNC threads and Tables 3, 4 and 6 for Metric threads (on next page).
- Drill and tap the workpiece to the correct size to a minimum depth of one-half the threaded shank diameter plus the threaded shank length. See rated load limit and bolt torque requirements imprinted on top of the swivel trunnion (See Table 1 through Table 6 on next page).
- When a hoist ring is used in a side load application, ensure equal loading on the pins by aligning the bail as shown in (Fig. 3).
- Always be sure total hoist ring bushing mating surface is in contact with the (workpiece) surface. Drilled and tapped hole must be 90 degrees to load (workpiece) surface.
- Install hoist ring to recommended torque with a torque wrench making sure the bushing flange meets the load (workpiece) surface.
- Never use spacers between bushing flange and mounting surface.
- Always select proper load rated lifting device for use with Swivel Hoist Ring.
- Attach lifting device ensuring free fit to hoist ring bail (lifting ring) (Fig. 1).
- Apply partial load and check proper rotation and alignment. There should be no interference between load (workpiece) and hoist ring bail (Fig. 2).
- Special Note: When a Hoist Ring is installed with a retention nut, the nut must have a full thread engagement and must meet one of the following standards to develop the Working Load Limit (WLL).

UNC NUTS

1. ASTM A-563

Grade D
(Heavy Hex or Hex Thick)
Grade DH
Grade DH3
2. ASTM A-194

Grade 2H
Grade 4
Grade 7
3. FNL

Grade 9
4. SAE J995 Grade 8

Hoist Ring Inspection / Maintenance

- Always inspect hoist ring before use.
- Regularly inspect hoist ring parts.
- Never use hoist ring that shows signs of corrosion, wear or damage.
- Never use hoist ring if bail is bent or elongated.
- Always be sure threads on shank and receiving hole are clean, not damaged, and fit properly.

METRIC NUTS

1. ASTM A-563M

Class 10S
2. ISO 898-2
(EN 20898-2/DIN 267-4)
Class 10
Class 12

Table 1					
Working Load Limit* 5:1 (lb)	Hoist Ring Bolt Torque (ft•lbf) \dagger	HR-125		HR-1000	
		Bolt Size \ddagger (in)	Effective Thread Projection Length (in)	Bolt Size \ddagger (in)	Effective Thread Projection Length (in)
800 † \dagger	7	5/16-18 $\times 1.50$. 58	5/16-18 $\times 1.50$. 52
1000 ††	12	$3 / 8-16 \times 1.50$. 58	$3 / 8-16 \times 1.50$. 52
2500	28	$1 / 2-13 \times 2.00$. 70	1/2-13 x 2.25	. 69
2500 ††	28	$1 / 2-13 \times 2.50$	1.20	1/2-13 x 2.75	1.19
4000	60	$5 / 8-11 \times 2.00$. 70	$5 / 8-11 \times 2.25$	69
$4000 \dagger \dagger$	60	$5 / 8-11 \times 2.75$	1.45	5/8-11 x 3.00	1.44
5000	100	$3 / 4-10 \times 2.25$. 95	$3 / 4-10 \times 2.50$. 94
5000 ††	100	$3 / 4-10 \times 2.75$	1.45	$3 / 4-10 \times 3.00$	1.44
7000Ω	100	$3 / 4-10 \times 2.75$. 89	$3 / 4-10 \times 3.00$	85
$7000 \dagger \dagger \Omega$	100	$3 / 4-10 \times 3.50$	1.64	$3 / 4-10 \times 3.50$	1.35
8000	160	$7 / 8-9 \times 2.75$. 89	$7 / 8-9 \times 3.00$	85
8000 ††	160	$7 / 8-9 \times 3.50$	1.64	$7 / 8-9 \times 3.50$	1.35
10000	230	$1-8 \times 3.00$	1.14	$1-8 \times 3.50$	1.35
10000 † \dagger	230	$1-8 \times 4.00$	2.14	$1-8 \times 4.50$	2.35
15000	470	1-1/4-7x4.50	2.21	1-1/4-7x5.00	2.09
24000	800	1-1/2-6 $\times 6.75$	2.97	1-1/2-6 x 5.50	2.59
30000	1100	2-4-1/2 x 6.75	2.97	-	-
50000	2100	2-1/2-4 x 8.00	4.00	-	-
75000	4300	3-4 x 10.50	5.00	-	-
100000	5100	$3-1 / 2-4 \times 13.00$	7.00	-	-

Ω Ultimate Load is 4.5 times Working Load Limit for 7000\# Hoist Ring when tested in 90° orientation. All sizes are individually proof tested to 2-1/2 times the Working Load Limit. *, $\dagger, \dagger \dagger, \ddagger($ See footnotes at bottom of Table 5).

Table 3			
HR-1000CT			
Working Load Limit $5: 1$ (lb) ****	Hoist Ring Bolt Torque in (ft•lbf) \dagger	Bolt Size (in) Δ	Effective Thread Projection Length (in)
1900	28	$1 / 2-13 \times 2.25$.70
1900	28	$1 / 2-13 \times 2.75$	1.20
3000	60	$5 / 8-11 \times 2.25$.70
4800	100	$3 / 4-10 \times 3.00$.85
6200	160	$7 / 8-9 \times 3.00$.85
8300	230	$1-8 \times 3.50$	1.35
12500	470	$11 / 4-7 \times 5.00$	2.10
20000	800	$11 / 2-6 \times 5.50$	2.60
20000	800	$11 / 2-8 \times 5.50$	2.60
28000	1100	$2-4.5 \times 7.50$	3.20
45000	2100	$21 / 2-4 \times 9.50$	3.73

Table 4						
Working Load Limit (kg)***		Hoist Ring Bolt Torque in (Nm) \dagger	HR-125M		HR-1000M	
Design Factor 5:1	$\begin{gathered} \text { HR-125M } \\ \text { Design 4:1 } \\ \hline \end{gathered}$		Bolt Size $\ddagger \ddagger(\mathrm{mm})$	HR-125M Effective Thread Projection Length (mm)	Bolt Size $\ddagger \ddagger$ (mm)	HR-1000M Effective Thread Projection Length (mm)
400	500	10	M $8 \times 1.25 \times 40$	16.9	M $8 \times 1.25 \times 40$	15.2
450	550	16	M $10 \times 1.50 \times 40$	16.9	M $10 \times 1.50 \times 40$	15.2
1050	1300	38	M $12 \times 1.75 \times 50$	17.2	M $12 \times 1.75 \times 55$	15.5
1900	2400	81	M $16 \times 2.00 \times 60$	27.2	M $16 \times 2.00 \times 65$	25.5
2150	2700	136	M $20 \times 2.50 \times 65$	31.2	M $20 \times 2.50 \times 70$	30.5
3000	3750	136	M $20 \times 2.50 \times 75$	28.1	M $20 \times 2.50 \times 80$	25.4
4200	5250	312	M $24 \times 3.00 \times 80$	33.1	M $24 \times 3.00 \times 90$	35.4
7000	8750	637	M $30 \times 3.50 \times 120$	65.1	M $30 \times 3.50 \times 140$	66.2
11000	13750	1005	M $36 \times 4.00 \times 150$	60.6	M $36 \times 4.00 \times 150$	56.2
12500	15600	1005	M $42 \times 4.50 \times 160$	70.6	-	-
13500	16900	1350	M $48 \times 5.00 \times 160$	101	-	-
22300	27900	2847	M $64 \times 6.00 \times 204$	101	-	-
31500	39400	5830	M $72 \times 6.00 \times 265$	132	-	-
44600	55800	6914	M $90 \times 6.00 \times 330$	177	-	-

See Footnotes on next page.
\dagger Tightening torque values shown are based upon threads being clean, dry and free of lubrication.
Footnotes below relate to tables 1-4

* Ultimate load is 5 times the Working Load Limit. Individually proof tested to 2-1/2 times the Working Load Limit.
** Ultimate load is 4 times the Working Load Limit. Individually proof tested to 2-1/2 times the Working Load Limit.
*** Individually proof tested to 2-1/2 times the Working Load Limit based on 4:1 design factor
**** Ultimate load is 5 times the Working Load Limit. Individually proof tested to 2 times the Working Load Limit.
$\dagger \dagger$ Long bolts are designed to be used with soft metal (i.e., aluminum) workpiece. While the long bolts may also be used with ferrous metal (i.e., steel \& iron) workpieces, short bolts are designed for ferrous workpieces only.
\ddagger Bolt specification is a Alloy socket head cap screw to ASTM A574. All threads are UNC .
$\ddagger \ddagger$ Bolt specification is a Grade 12.9 Alloy socket head cap screw to DIN 912. All threads are metric (ASME/ANSI B18.3.1m)
Δ Bolt specification is a Grade L7 or L43 Alloy socket head cap screw to ASTM A320. All threads are UNC.
$\ddagger \ddagger \ddagger$ Tighten bolt to specified torque, then tighten nut to specified torque.
All Swivel Hoist Rings are individually proof tested.

Table 5			
SS-125 $¥ \mp$			
Working Load Limit (lb) $¥$	Torque in (ft•lbf) \dagger	Bolt Size (in) §	Effective Thread Projection (in)
400	3.5	5/16-18 x 1	. 29
400	3.5	5/16-18 $\times 1.25$. 54
500	6	3/8-16 x 1.25	. 54
1250	14	1/2-13x2	. 78
1250	14	$1 / 2-13 \times 2.25$	1.03
1250	14	$1 / 2-13 \times 2.5$	1.28
2000	30	5/8-11 $\times 2$. 78
2000	30	5/8-11 x 2.25	1.03
2000	30	5/8-11 x 2.5	1.28
2500	50	$3 / 4-10 \times 2.25$	1.03
2500	50	$3 / 4-10 \times 2.75$	1.53
3500	50	$3 / 4-10 \times 2.75$	1.04
3500	50	$3 / 4-10 \times 3.25$	1.54
4000	80	7/8-9 $\times 2.75$	1.04
4000	80	$7 / 8-9 \times 3$	1.29
5000	115	$1-8 \times 3$	1.29
5000	115	$1-8 \times 3.25$	1.54
5000	115	$1-8 \times 4$	2.29
7500	235	1-1/4-7x 4	1.89
12000	400	1-1/2-6 5.5	2.70
15000	550	2-4-1/2 x 5.75	2.96
25000	1050	2-1/2-4 $\times 8$	4.00
25000	1050	2-1/2-8x8	4.00
37500	2150	3-4 x 10.25	5.00
50000	2550	3-1/2-4×13	7.00

Table 6			
SS-125M ¥¥			
SS-125M ¥¥ Working Load Limit (kg) $¥$	Torque in Lbs. \dagger	Bolt Size (mm) §§	Effective Thread Projection (mm)
200	4	$\mathrm{M} 8 \times 1.25 \times 30$	13
250	8	$\mathrm{M} 10 \times 1.50 \times 35$	18
525	18	$\mathrm{M} 12 \times 1.75 \times 50$	19
950	40	$\mathrm{M} 16 \times 2.00 \times 60$	29
1075	68	$\mathrm{M} 20 \times 2.50 \times 65$	34
1500	68	$\mathrm{M} 20 \times 2.50 \times 75$	32
2100	108	$\mathrm{M} 24 \times 3.00 \times 80$	37
2100	108	$\mathrm{M} 30 \times 3.50 \times 110$	58
3500	318	$\mathrm{M} 30 \times 3.50 \times 95$	42
3500	318	$\mathrm{M} 30 \times 3.50 \times 115$	62
5500	542	$\mathrm{M} 36 \times 4.00 \times 135$	64
6250	542	$\mathrm{M} 42 \times 4.50 \times 155$	82
6750	746	$\mathrm{M} 48 \times 5.00 \times 155$	82
11150	1423	$\mathrm{M} 64 \times 6.00 \times 205$	101
15750	2915	$\mathrm{M} 72 \times 6.00 \times 265$	132
22300	3459	$\mathrm{M} 90 \times 6.00 \times 330$	177

Footnotes below relate to Tables 5 and 6

\neq Ultimate load is 5 times the Working Load Limit. Individually proof tested to 2 times the Working Load Limit.
$\nexists \neq$ All components are 316 Stainless Steel, except Bolt Retainers, which are made from15-7 PH (UNS 15700) magnetic stainless steel.
§ Bolt specification is 316 Stainless Steel socket head cap screw to ASTM F837 Group 1 (316).
$\S \S$ Bolt specification is 316 Stainless Steel socket head cap screw to ASTM F837M (316). All threads are Metric (ASME/ANSI B18.3.1M).

CROSBY® ${ }^{\circledR}$ THIMBLE EYE BUNDLE CLIPS
 WARNING \& APPLICATION INSTRUCTIONS

The Bundle Clip is utilized in a choker hitch application to maintain the shape of bundled packages after a load is placed. The Bundle Clip is attached to live line of choker hitch, but it is never to be used as a button or ferrule to carry a load in the primary load path.

Certain conditions (such as extreme variation of the choke size) or improper installation may cause the eye of the choke hitch to disengage from the Bundle Clip and allow the eye to seat away from or below the Bundle Clip (see Figure 3). If this occurs, the Bundle Clip must be removed and installed in the proper position.

The Bundle Clip is sized to provide a grip to the live rope without reducing the efficiency of a choker hitch. This grip is adequate to keep the bundle clip in position.
These instructions are for use with thimble eyes formed with RRL or RLL wire rope, 6×19 or 6×36 Class, FC or IWRC; IPS or XIP, XXIP, and a Crosby Thimble. For other classes of wire rope not mentioned above, we recommend contacting Crosby Engineering.

For Soft Eye applications see the Crosby G-460 Soft Eye Bundle Clip.

For OSHA (Construction) applications, see OSHA 1926.251.

1. The eye of the sling must be in the choked position (around live line). Choker hitch applications should comply with the requirements of ASME B30.9 Slings. Install the choker hitch to provide a minimum choke angle of 120 degrees (See Figure 1). Refer to ASME B30.9 for required de-rating of the sling if choke angle is less than 120 degrees.
2. Before installing Bundle Clip, apply
 initial load by lifting the bundle and clearing the support, producing a tight choke. Repeat as necessary until the bundle package is in the most compact position (See figure 2, Loaded).
Keep hands and feet from under load.

Figure 2

WARNING \& APPLICATION INSTRUCTIONS

The Bundle Clip is utilized in a choker hitch application to maintain the shape of bundled packages after a load is placed. The Bundle Clip is attached to live line of choker hitch, but it is never to be used as a button or ferrule to carry a load in the primary load path.
Certain conditions (such as extreme variation of the choke size) or improper installation may cause the eye of the choke hitch to disengage from the Bundle Clip and allow the eye to seat away from or below the Bundle Clip (see Figure 3). If this occurs, the Bundle Clip must be removed and installed in the proper position.

The Bundle Clip is sized to provide a grip to the live rope without reducing the efficiency of a choker hitch. This grip is adequate to keep the bundle clip in position. The eye may pull free of the Bundle Clip if not positioned properly.

These instructions are for use with soft eyes (no thimble) formed with RRL or RLL wire rope, 6×19 or 6×36 Class, FC or IWRC; IPS or XIP, XXIP. For other classes of wire rope not mentioned above, we recommend contacting Crosby Engineering.
For Thimble Eye applications see the Crosby G-461 Thimble Eye Bundle Clip.
For OSHA (Construction) applications, see OSHA 1926.251.

1. The eye of the sling must be in the choked position (around live line). Choker hitch applications should comply with the requirements of ASME B30.9 Slings. Install the choker hitch to provide a minimum choke angle of 120 degrees (See Figure 1). Refer to ASME B30.9 for required de-rating of the sling if choke angle is less than 120 degrees.
2. Before installing Bundle Clip, apply
 initial load by lifting the bundle and clearing the support, producing a tight choke. Repeat as necessary until the bundle package is in the most compact position (See figure 2, Loaded).
Keep hands and feet from under load.

WARNING

- Failure to read, understand, and follow these instructions may cause death or serious injury.
- A falling load may seriously injure or kill.
- Read and understand these instructions before using clips.
- Failure to properly position the Bundle Clip may allow the load to slip and fall.
- Do not use the Bundle Clip to form the choke hitch (See Figure 3).
- Match the same size clip to the same size wire rope.
- Install Bundle Clip only as instructed.
- Do not use with plastic coated wire rope.
- Do not use for lifting personnel.

3. After initial loading, install the Bundle Clip in proper orientation, with curved portion (Bundle Clip tip) over the eye of the sling. Insert U-bolt through the Bundle Clip. Properly position the clip base over the U-bolt and install nuts (See Figure 3). Use torque wrench to tighten evenly, alternating from one nut to the other until the curved portion bottoms out on the clip base, and the recommended torque is reached (See Table 1).

Figure 3

Table 1-Recommended Torque		
Clip Size	Rope Size (in)	Torque (ft•lbf)
$5 / 8$	$5 / 8$	95
$3 / 4$	$3 / 4$	130
$7 / 8$	$7 / 8$	225

4. Before each lift, check to ensure that the choke eye has not slipped from the Bundle Clip tip. Repeat Step 3 if necessary.
5. When disconnecting, the load should be clear of the stable support (See figure 2, Loaded). Remove Bundle Clip. Stay clear of the load as the bundle is lowered and the load is removed from the sling.

In accordance with good rigging and maintenance, the wire rope sling should be inspected periodically for wear, abuse, and general adequacy.

Figure 2

SL-150 \& SL-150M Slide-Loc Lifting Point

LIFTING POINT

 APPLICATION / ASSEMBLY INSTRUCTIONS- Lifting Points incorporate a red indented area on each forged bail that provides a quick indicator to determine whether the Lifting Point is in the installation position or the lifting position. If the QUIC-CHECK mark is visible, product is in installation mode and shall not be used for lifting.
- To check, look for indented surface (red) on bail. A visible QUIC-CHECK mark (Figure 2) means the slide lock and bolt are engaged for installation. When Lifitng Point is properly installed, move slide lock to lifting position (Figure 1).
- Use Lifting Points only with a ferrous metal (i.e., steel, iron) or soft metal (e.g., aluminum) load (workpiece). Do not leave threaded end of Lifting Point in aluminum loads for long time periods due to corrosion.
-When using lifting slings of two or more legs, make sure the forces in the legs are calculated using the angle from the horizontal sling angle to the leg and select the proper size swivel hoist ring to allow for the angular forces.
- After determining the loads on each Lifting Point, select the proper size Lifting Point using the Working Load Limit ratings in Table 1 for UNC threads and Table 2 for Metric threads.
- Never exceed rated capacity of Lifting Point. See Table 1 for UNC threads, and Table 2 for metric threads.
- Drill and tap the workpiece to the correct size to a minimum depth of one-half the threaded shank diameter plus the threaded shank length.
- Install Lifting Point by hand so that the bushing flange is held tight to the mounting surface by the bolt. The bushing flange should engage the entire mounting surface.
- Never use spacers between bushing flange and mounting surface.
- Always select proper load rated lifting device for use with Lifting Points.
- Attach lifting device ensuring free fit to Lifting Point bail. (Figure 6)
- Never lift load if Red QUIC-CHECK indicator is visible. (Figure 2)
- Apply partial load and check proper rotation and alignment. The Lifting Point bail should be in-line with the direction of the load.

Figure 1
Figure 2

- Do not load in a direction perpendicular to the bail. (Figure 5)
- Special Note: When a Lifting Point is installed with a retention nut, the nut must have a full thread engagement and must meet one of the following standards to develop the Working Load Limit (WLL):

1. ASTM A-563
A. Grade D Hex Thick
B. Grade DH Standard Hex
2. SAE Grade 10.9 - Standard Hex

To place the Lifting Point:

- Move the slide lock into the installation position, such that the four flats on the bolt head are engaged. (Figure 2)
- Thread the bolt of the Lifting Point into the hole of your workpiece making sure that the entire length of exposed bolt thread is engaged. If the hole on your workpiece is not threaded, ensure that the Lifting Point is secured with a nut on the opposite side of your workpiece and that that nut thread is fully engaged.
- Before applying any load, ensure that the slide lock has been moved back into the lifting position and that the bail is free to rotate. (Figure 1)
- The Lifting Point can be loaded in any direction shown in Figure 4.
- Do not swivel the Lifting Point while supporting a load. The Lifting Point is a positioning device and is not intended to swivel under load.

To remove Lifting Point

- Move the slide lock into the installation position, such that the four flats on the bolt head flats are engaged. (Figure 2)
- Unthread the Lifting Point from your workpiece.

Lifting Point Inspection / Maintenance

- Perform regular daily inspections as recommended.
- Always inspect Lifting Point before use.
- Regularly inspect Lifting Point parts. (Figure 3)
- Never use Lifting Point that shows signs of corrosion, wear or damage.

Table 1		
Working Load Limit 4:1 (t)	UNC Bolt Size (in)	Effective Thread Projection Length (in)
.5	$3 / 8$.61
.75	$1 / 2$.80
1.50	$5 / 8$	1.01
2.30	$3 / 4$	1.28
2.30	$7 / 8$	1.63
3.20	1	1.93

- Never use Lifting Point if bail is bent or elongated.
- Always be sure threads on shank and receiving hole are clean, not damaged, and fit properly.
- Never use spacers (washers) between bushing flange and the mounting surface.
- Always ensure free movement of bail. The bail should swivel 360 degrees. (Figure 3)
- Always be sure total workpiece surface is in contact with Lifting Point bushing mating surface. Drilled and tapped hole must be 90 degrees to load (workpiece) surface.

Figure 3

Figure 4

Figure 5

Figure 6

[^0]: *Ultimate Load is 5 times the Working Load Limit. Based on single leg sling (in-line load), or resultant load on multiple legs with an included angle less than or equal to 120 degrees. Applications with wire rope and synthetic sling generally require a design factor of 5 . **Proof Test Load equals or exceeds the requirement of ASTM A952(8.1) and ASME B30.9. †Offshore Container Master Links Proof Tested to 2.5 times the Working Load Limit with 70 percent fixtures. $\dagger \dagger$ Welded Master Link.

[^1]: For use with chain slings, refer to page 243 for sling ratings and page 240 for proper master link selection.

[^2]: * Ultimate Load is 5 times the Working Load Limit. The maximum individual sublink working load limit is 75% of the assembly working load limit except for $2-1 / 2$ "and $2-3 / 4$ ", which are 100% of assembly working load limit. Applications with wire rope and synthetic sling generally require a design factor of 5 . **Proof Test Load equals or exceeds the requirement of ASTM A952(8.1) and ASME B30.9.

[^3]: For use with chain slings, refer to page 244 for sling ratings and page 240 for proper master link selection.

[^4]: *Minimum Ultimate Load is 5 times the Working Load Limit.

[^5]: *Ultimate Load is 6 times the Working Load Limit.

[^6]: *Ultimate Load is 6 times the Working Load Limit. Based on single leg sling (in-line load), or resultant load on multiple legs with an included angle less than or equal to 120°.

[^7]: *Ultimate Load is 5 times the Working Load Limit. Working Load Limit shown is for in-line pull. Maximum Proof Load is 2 times the Working Load Limit.

[^8]: *Ultimate Load is 5 times the Working Load Limit. Maximum Proof Load is 2 times the Working Load Limit.

[^9]: *Ultimate Load is 5 times the Working Load Limit. Maximum Proof Load is 2 times the Working Load Limit. ** On Request: Special threading or as forged bolts for customer conversion.

[^10]: *Ultimate Load is 5 times the Working Load Limit. Rating based on UNC thread size shown in Max Thread Diameter column. \dagger Dimension before machining (as forged).

[^11]: *Ultimate Load is 5 times the Working Load Limit.
 ** Ultimate Load is 4.5 times the Working Load Limit for 7000 \# Hoist Ring when tested in 90 degree orientation.
 \dagger Long Bolts are designed to be used with soft metal (i.e., aluminum) workpiece. While the long bolts may also be used with ferrous metal (i.e.,steel \& iron) workpiece, short bolts are designed for ferrous workpieces only.
 \ddagger Bolt specification is an Alloy socket head cap screw to ASTM A 574.
 \# Hex head bolt used on Frame 8 (100,000lb.) Hoist Ring.

[^12]: *The tightening torque values shown are based upon threads being clean, dry and free of lubrication.
 \dagger Individually proof loaded to 2-1/2 times the Working Load Limit based on the 4:1 design factor.
 \ddagger Bolt specification is a Grade 12.9 Alloy socket head cap screw to Din 912. All threads are metric (ASME/ANSI B18.3.1m).

[^13]: *Ultimate Load is 5 times the Working Load Limit. ** Ultimate Load is 4.5 times the Working Load Limit for 7000 \# Hoist Ring when tested in 90 degree orientation. *** Individually proof loaded to 2-1/2

[^14]: *Ultimate Load is 5 times the Working Load Limit. \ddagger Bolt specification is an Alloy socket head cap screw to ASTM A320 Grade L7 or L43.
 NOTE: The tightening torque values shown are based upon threads being clean, dry and free of lubrication.

[^15]: *Ultimate Load is 5 times the Working Load Limit.

[^16]: *Ultimate Load is 5 times the Working Load Limit. \ddagger Bolt specification is 316 Stainless Steel socket head cap screw to ASTM F 837M Group 1 (316).

[^17]: *Ultimate Load is 5 times the Working Load Limit.

[^18]: *Ultimate Load is 5 times the Working Load Limit.

[^19]: *Proof Load is 2.5 times the Working Load Limit. Ultimate Load is 5 times the Working Load Limit. † Mechanical Galvanized

[^20]: *Proof Load is 2.5 times the Working Load Limit. Ultimate Load is 5 times the Working Load Limit. \dagger Mechanical Galvanized

[^21]: *Proof Load is 2.5 times the Working Load Limit. Ultimate Load is 5 times the Working Load Limit. † Mechanical Galvanized

[^22]: *Proof Load is 2.5 times the Working Load Limit. Ultimate Load is 5 times the Working Load Limit. † Mechanical Galvanized

[^23]: *Proof Load is 2.5 times the Working Load Limit. Ultimate Load is 5 times the Working Load Limit. † Mechanical Galvanized

[^24]: * Mechanical Galvanized

[^25]: Minimum tap depth is basic shank length plus one-half the nomina eye bolt diameter

[^26]: Designed to be used with Ferrous workpiece only.

 * Ultimate load is 5 times the Working Load Limit. Individually proof tested to 2-1/2 times the Working Load Limit.
 \dagger Tightening torque values shown are based upon threads being clean, dry and free of lubrication.
 $\dagger \dagger$ Long bolts are designed to be used with soft metal (i.e., aluminum) workpiece. While the long bolts may also be used with ferrous metal (i.e., steel \& iron) workpieces, short bolts are designed for ferrous workpieces only.
 $\ddagger \quad$ Bolt specification is a Grade 8 Alloy socket head cap screw to ASTM A574. All threads are UNC - 3A.
 $\ddagger \ddagger$ Bolt specification is a Grade 12.9 Alloy socket head cap to DIN 912. All threads are metric (ASME/ANSI B18.3.1m).

[^27]: * Designed to be used with ferrous workpiece only

